首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The binding of the HIV‐1 Rev protein as an oligomer to a viral RNA element, the Rev‐response element (RRE), mediates nuclear export of genomic RNA. Assembly of the Rev–RRE ribonucleoprotein (RNP) complex is nucleated by the binding of the first Rev molecule to stem IIB of the RRE. This is followed by stepwise addition of a total of ~six Rev molecules along the RRE through a combination of RNA–protein and protein–protein interactions. RRE stem II, which forms a three‐way junction consisting of stems IIA, IIB and IIC, has been shown to bind to two Rev molecules in a cooperative manner, with the second Rev molecule binding to the junction region of stem II. The results of base substitutions at the stem II junction, and characterization of stem II junction variants selected from a randomized library showed that an “open” flexible structure is preferred for binding of the second Rev molecule, and that binding of the second Rev molecule to the junction region is not sequence‐specific. Alanine substitutions of a number of Rev amino acid residues implicated to be important for Rev folding in previous structural studies were found to result in a dramatic decrease in the binding of the second Rev molecule. These results support the model that proper folding of Rev is critical in ensuring that the flexible RRE is able to correctly position Rev molecules for specific RNP assembly, and suggests that targeting Rev folding may be effective in the inhibition of Rev function. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
The product of the yeast SNP1 gene has high homology to two domains of the metazoan U1 snRNP protein 70K, which binds to stem/loop I of the U1 RNA. However, the absence of other domains conserved in metazoan 70K and the minimal effect of yeast U1 RNA stem/loop I deletion make the assignment of SNP1 as yeast 70K less clear. To address this question, we have expressed the SNP1 gene as a fusion protein in E. coli and developed a gel shift assay for U1 RNA binding. We show here that the product of the yeast SNP1 gene binds directly and specifically to the first 47 nucleotides of yeast U1 RNA, which include the stem/loop 1 structure. We therefore conclude that the SNP1 gene product is the yeast 70K homolog. This is the first yeast protein to be identified as a homolog of a metazoan snRNP protein.  相似文献   

3.
4.
Several lines of evidence suggest that cellular proteins play a role during human immunodeficiency virus type 1 (HIV-1) Tat-mediated trans activation. A recent report from this laboratory has shown that a 140-kDa HeLa nuclear protein (p140) binds specifically to the lower stem region of the Tat response element, TAR RNA. Since HIV-1 trans activation is most efficient in proliferating T cells, we investigated the binding of p140 to TAR RNA in unstimulated and mitogen-activated, G1-phase primary T lymphocytes. TAR RNA/protein-binding activity was low in resting cells but increased significantly within 2 h of activation and remained elevated for at least 48 h. Corresponding increases in p140 protein levels were observed with most but not all donors, suggesting that an additional nuclear factor(s) may be required for efficient binding of this protein to TAR RNA in activated T cells.  相似文献   

5.
6.
Expression of the structural proteins of human immunodeficiency virus type 1 (HIV-1) requires the direct interaction of multiple copies of the viral protein Rev with its target RNA, the Rev response element (RRE). RRE is a complex 351-nt RNA that is highly structured and located within the viral env gene. During initial Rev-RRE recognition, Rev binds with high affinity to a bubble structure located within the RRE RNA stem-loop II. We have used a site-specific photocrosslinking method based on 6-thioguanosine (6-thioG) photochemistry to probe the conformation of the high-affinity binding site of RRE RNA and its interactions with Rev protein under physiological conditions. A minimal duplex RNA containing the bubble region of RRE and 12 flanking base pairs was synthesized chemically. Two different RRE constructs with a single photoactive nucleoside (6-thio-dG or 6-thioG) at position 47 or 48 were synthesized. Upon UV irradiation, 6-thioG at both positions formed interstrand covalent crosslinks in RRE RNA. Mapping of crosslink sites by RNA sequencing revealed that 6-thioG at position 47 or 48 crosslinked to A73. In the presence of Rev, both RNA-RNA and RNA-protein crosslinks were observed, however, the RNA-RNA crosslink site was unchanged. Our results provide direct evidence that, during RNA-protein recognition, Rev is in close proximity to O6 of G47 and G48 in the major groove of RRE RNA. Our results also show that the bubble region of RRE RNA has a biologically relevant structure where G47 and G48 are in close proximity to A73 and this RNA structure is not changed significantly upon Rev binding. We propose that Rev protein recognizes and binds to specific structural elements of RRE RNA containing non-Watson-Crick base pairs and such structures could be a determinant for recognition by other RNA-binding proteins. Our site-specific crosslinking methods provide a general approach to capture dynamic states of biologically relevant RNA structures that are otherwise missed by NMR and X-ray crystallographic studies.  相似文献   

7.
The minimal protein requirements that drive virus-like particle formation of human immunodeficiency virus type 1 (HIV-1) have been established. The C-terminal domain of capsid (CTD-CA) and nucleocapsid (NC) are the most important domains in a so-called minimal Gag protein (mGag). The CTD is essential for Gag oligomerization. NC is known to bind and encapsidate HIV-1 genomic RNA. The spacer peptide, SP1, located between CA and NC is important for the multimerization process, viral maturation and recognition of HIV-1 genomic RNA by NC. In this study, we show that NC in the context of an mGag protein binds HIV-1 genomic RNA with almost 10-fold higher affinity. The protein region encompassing the 11th alpha-helix of CA and the proposed alpha-helix in the CA/SP1 boundary region play important roles in this increased binding capacity. Furthermore, sequences downstream from stem loop 4 of the HIV-1 genomic RNA are also important for this RNA-protein interaction. In gel shift assays using purified mGag and a model RNA spanning the region from +223 to +506 of HIV-1 genomic RNA, we have identified an early complex (EC) formation between 2 proteins and 1 RNA molecule. This EC was not present in experiments performed with a mutant mGag protein, which contains a CTD dimerization mutation (M318A). These data suggest that the dimerization interface of the CTD plays an important role in EC formation, and, as a consequence, in RNA-protein association and multimerization. We propose a model for the RNA-protein interaction, based on previous results and those presented in this study.  相似文献   

8.
9.
10.
11.
12.
The mRNA of human NF-kappaB repressing factor (NRF) contains a long 5'-untranslated region (UTR) that directs ribosomes to the downstream start codon by a cap-independent mechanism. Comparison of the nucleotide (nt) sequences of human and mouse NRF mRNAs reveals a high degree of identity throughout a fragment of 150 nt proximal to the start codon. Here, we show that this region constitutes a minimal internal ribosome entry segment (IRES) module. Enzymatic RNA structure analysis reveals a secondary structure model of the NRF IRES module. Point mutation analysis of the module determines a short, 14-nt RNA element (nt 640-653) as a mediator of IRES function. Purification of IRES binding cellular proteins and subsequent ESI/MS/MS sequence analysis led to identification of the RNA-binding protein, JKTBP1. EMSA experiments show that JKTBP1 binds upstream to the 14-nt RNA element in the NRF IRES module (nt 579-639). Over-expression of JKTBP1 significantly enhances activity of the NRF IRES module in dicistronic constructs. Moreover, siRNA experiments demonstrate that down-regulation of endogenous JKTBP1 decreases NRF IRES activity and the level of endogenous NRF protein. The data of this study show that JKTBP1 and the 14-nt element act independently to mediate NRF IRES activity.  相似文献   

13.
The human T-cell leukemia viruses (HTLVs) encode a trans-regulatory protein, Rex, which differentially regulates viral gene expression by controlling the cytoplasmic accumulation of viral mRNAs. Because of insufficient amounts of purified protein, biochemical characterization of Rex activity has not previously been performed. Here, utilizing the baculovirus expression system, we purified HTLV type II (HTLV-II) Rex from the cytoplasmic fraction of recombinant baculovirus-infected insect cells by heparin-agarose chromatography. We directly demonstrated that Rex specifically bound HTLV-II 5' long terminal repeat RNA in both gel mobility shift and immunobinding assays. Sequences sufficient for Rex binding were localized to the R-U5 region of the HTLV-II 5' long terminal repeat and correlate with the region required for Rex function. The human immunodeficiency virus type 1 (HIV-1), has an analogous regulatory protein, Rev, which directly binds to and mediates its action through the Rev-responsive element located within the HIV-1 env gene. We demonstrated that HTLV-II Rex rescued an HIV-1JR-CSF Rev-deficient mutant, although inefficiently. This result is consistent with a weak binding activity to the HIV-1 Rev-responsive element under conditions in which it efficiently bound the HTLV-II long terminal repeat RNA.  相似文献   

14.
15.
Identification of a novel HIV-1 TAR RNA bulge binding protein.   总被引:6,自引:4,他引:2       下载免费PDF全文
The Tat protein binds to TAR RNA to stimulate the expression of the human immunodeficiency virus type 1 (HIV-1) genome. Tat is an 86 amino acid protein that contains a short region of basic residues (aa49-aa57) that are required for RNA binding and TAR is a 59 nucleotide stem-loop with a tripyrimidine bulge in the upper stem. TAR is located at the 5' end of all viral RNAs. In vitro, Tat specifically interacts with TAR by recognising the sequence of the bulge and upper stem, with no requirement for the loop. However, in vivo the loop sequence is critical for activation, implying a requirement for accessory cellular TAR RNA binding factors. A number of TAR binding cellular factors have been identified in cell extracts and various models for the function of these factors have been suggested, including roles as coactivators and inhibitors. We have now identified a novel 38 kD cellular factor that has little general, single-stranded or double-stranded RNA binding activity, but that specifically recognises the bulge and upper stem region of TAR. The protein, referred to as BBP (bulge binding protein), is conserved in mammalian and amphibian cells and in Schizosaccharomyces pombe but is not found in Saccharomyces cerevisiae. BBP is an effective competitive inhibitor of Tat binding to TAR in vitro. Our data suggest that the bulge-stem recognition motif in TAR is used to mediate cellular factor/RNA interactions and indicates that Tat action might be inhibited by such competing reactions in vivo.  相似文献   

16.
The replication initiator protein of bacteriophage f1 (gene II protein) binds to the phage origin and forms two complexes that are separable by polyacrylamide gel electrophoresis. Complex I is formed at low gene II protein concentrations, and shows protection from DNase I of about 25 base-pairs (from position +2 to +28 relative to the nicking site) at the center of the minimal origin sequence. Complex II is produced at higher concentrations of the protein, and has about 40 base-pairs (from -7 to +33) protected. On the basis of gel mobility, complex II appears to contain twice the amount of gene II protein as does complex I. The 40 base-pair sequence protected in complex II corresponds to the minimal origin sequence as determined by in-vivo analyses. The central 15 base-pair sequence (from +6 to +20) of the minimal origin consists of two repeats in inverted orientation. This sequence, when cloned into a plasmid, can form complex I, but not complex II. We call this 15 base-pair element the core binding sequence for gene II protein. Methylation interference with the formation of complex I by the wild-type origin indicates that gene II protein contacts six guanine residues located in a symmetric configuration within the core binding sequence. Formation of complex II requires, in addition to the core binding sequence, the adjacent ten base-pair sequence on the right containing a third homologous repeat. A methylation interference experiment performed on complex II indicates that gene II protein interacts homologously with the three repeats. In complex II, gene II protein protects from DNase I digestion not only ten base-pairs on the right but also ten base-pairs on the left of the sequence that is protected in complex I. Footprint analyses of various deletion mutants indicate that the left-most ten base-pairs are protected regardless of their sequence. The site of nicking by gene II protein is located within this region. A model is presented for the binding reaction involving both protein-DNA and protein-protein interactions.  相似文献   

17.
The U1A protein is a sequence-specific RNA binding protein found in the U1 snRNP particle where it binds to stem/loop II of U1 snRNA. U1A contains two 'RNP' or 'RRM' (RNA Recognition Motif) domains, which are common to many RNA-binding proteins. The N-terminal RRM has been shown to bind specifically to the U1 RNA stem/loop, while the RNA target of the C-terminal domain is unknown. Here, we describe experiments using a 102 amino acid N-terminal RRM of U1A (102A) and a 25-nucleotide RNA stem/loop to measure the binding constants and thermodynamic parameters of this RNA:protein complex. Using nitrocellulose filter binding, we measure a dissociation constant KD = 2 x 10(-11) M in 250 mM NaCl, 2 mM MgC2, and 10 mM sodium cacodylate, pH 6 at room temperature, and a half-life for the complex of 5 minutes. The free energy of association (delta G degrees) of this complex is about -14 kcal/mol in these conditions. Determination of the salt dependence of the binding suggests that at least 8 ion-pairs are formed upon complex formation. A mutation in the RNA loop sequence reduces the affinity 10 x, or about 10% of the total free energy.  相似文献   

18.
19.
Slt11p is a new splicing factor identified on the basis of synthetic lethality with a mutation in the 5' end of U2 snRNA, a region that is involved in intermolecular U2/U6 helix II interaction. Slt11p is required for spliceosome assembly. Our genetic results suggest that Slt11p is involved in the base-pairing interaction of U2/U6 helix II in vivo. We showed that the recombinant protein binds to RNAs with some degree of structural specificity. Slt11p also anneals RNA and binds to the resulting duplexes, which contain two separated helical regions. These RNA structures are reminiscent of U2/U6 helix II, which is formed concomitantly with U4/U6 stem II, and suggest that Slt11p facilitates the cooperative formation of helix II in association with stem II in the spliceosome. We show that Slt11p and Slu7p, a second-step factor, interact with each other both in vivo and in vitro and that the binding of Slu7p to Slt11p impairs the RNA-binding activity of the latter. These results suggest that the function of Slt11p is regulated by Slu7p in the spliceosome.  相似文献   

20.
We have investigated the binding of the f1 single-stranded DNA-binding protein (gene V protein) to DNA oligonucleotides and RNA synthesized in vitro. The first 16 nucleotides of the f1 gene II mRNA leader sequence were previously identified as the gene II RNA-operator; the target to which the gene V protein binds to repress gene II translation. Using a gel retardation assay, we find that the preferential binding of gene V protein to an RNA carrying the gene II RNA-operator sequence is affected by mutations which abolish gene II translational repression in vivo. In vitro, gene V protein also binds preferentially to a DNA oligonucleotide whose sequence is the DNA analog of the wild-type gene II RNA-operator. Therefore, the gene V protein recognizes the gene II mRNA operator sequence when present in either an RNA or DNA context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号