首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast axoplasmic transport through the sensory fibers of the sciatic nerve has been compared in rats and mice. The use of in vitro incubation permits high levels of specific activity to be attained when labeling with [35S]l-methionine. The specific activity of the transported proteins was about 10-fold greater in mice than in rats. Proteins labeled with radioactive methionine were examined after separation on polyacrylamide gels. There are no differences between mice and rats when the proteins carried by rapid transport are compared. Similarly, the proteins synthesized by the Schwann cells of these two species are not distinguishable. The dorsal root ganglia of mice, however, yield a band of radioactivity that is not seen in ganglia from rats. This band migrates with an apparent molecular weight of 31,000 daltons.  相似文献   

2.
DEPENDENCE OF FAST AXOPLASMIC TRANSPORT IN NERVE ON OXIDATIVE METABOLISM   总被引:8,自引:3,他引:5  
—A crest of labelled activity moving down the sciatic nerve at 401 ± 35 mm/day after injection of the L7 dorsal root ganglion of the cat with L-[3H]leucine characterizes fast axoplasmic transport of materials and has been studied with regard to its dependence on oxidative metabolism. Transport of labelled materials in vitro occurred if the nerve was supplied with O2 or 95 % O2+ 5 % CO2. Transport was not dependent upon continuity of the fibres with the ganglionic soma. Asphyxiation (N2) rapidly blocked fast transport in vitro. Likewise NaCN or dinitrophenol in an O2 atmosphere both effectively block fast transport within 15 min. Tetrodotoxin and procaine, agents which block excitation of the membrane, had no effect on fast transport. The inference is that oxidative metabolism supplies the energy required by the molecular mechanism underlying fast axoplasmic transport.  相似文献   

3.
—The effects of Ca2+-free incubation medium on in vitro axoplasmic transport of proteins were studied in the central and peripheral branches of primary afferent spinal neurons of frog. Following exposure of dorsal root ganglia to [3H]leucine, the amount of radioactive protein transported along the axons during a subsequent 19 h period was decreased by approximately 60 per cent in preparations incubated in Ca2+-free, 1 mm -EGTA medium compared to those in normal medium. In similar Ca2+-free conditions the endogenous calcium levels were decreased to one-fourth the levels found following incubation in normal medium. Neither raising EGTA concentrations to 10 mm nor incubation in Ca2+-free medium prior to the [3H]leucine pulse were found to decrease the amount of transported protein in Ca2+-free medium by more than 70 per cent. The decrement in the amount of transported proteins did not appear to be due to an effect of Ca2+-free medium upon either the uptake of [3H]leucine into ganglion cells or upon the incorporation of radioactive amino acid into protein. The data are interpreted to suggest (i) that‘loading' of proteins onto the transport system is inhibited during Ca2+-free incubation and (ii) that the apparent transport of radioactive proteins during Ca2+-free incubation conditions might reflect proximo-distal movement of either microtubular protein or some other protein components of the transport system. It is proposed that calcium ions might function as reversible bonds between the transport system and‘transported' proteins.  相似文献   

4.
Following the injection of 3H-leucine into a crayfish ganglion, tritiumlabeled proteins were detected remaining in the ganglion and moving at a slow linear rate caudad along the nerve cord. The rate of movement increased linearly with temperature between 5 and 20°C, but ceased at 3° C. The movement was also blocked for a distance around a colchicine-injected ganglion. Both of these observations would be compatible with the involvement of microtubules in slow axoplasmic transport. However, in both instances normal-appearing microtubules were observed by electron microscopy. Gel electropherograms of the denatured labeled proteins showed that the transported proteins are complex and may correspond to most of the axoplasmic proteins including the microtubules.  相似文献   

5.
Newly synthesized neurofilament proteins become highly phosphorylated within axons. Within 2 days after intravitreously injecting normal adult mice with [32P]orthophosphate, we observed that neurofilaments along the entire length of optic axons were radiolabeled by a soluble32P-carrier that was axonally transported faster than neurofilaments.32P-incorporation into neurofilament proteins synthesized at the time of injection was comparatively low and minimally influenced the labeling pattern along axons.32P-incorporation into axonal neurofilaments was considerably higher in the middle region of the optic axons. This characteristic non-uniform distribution of radiolabel remained nearly unchanged for at least 22 days. During this interval, less than 10% of the total32P-labeled neurofilaments redistributed from the optic nerve to the optic tract. By contrast, newly synthesized neurofilaments were selectively pulse-labeled in ganglion cell bodies by intravitreous injection of [35S]methionine and about 60% of this pool translocated by slow axoplasmic transport to the optic tract during the same time interval. These findings indicate that the steady-state or resident pool of neurofilaments in axons is not identical to the newly synthesized neurofilament pool, the major portion of which moves at the slowest rate of axoplasmic transport. Taken together with earlier studies, these results support the idea that, depending in part on their phosphorylation state, transported neurofilaments can interact for short or very long periods with a stationary but dynamic neurofilament lattice in axons.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

6.
—An in vitro system from the frog has been used to study fast axonal transport of glycoproteins. The migration of [3H]fucose-, [3H]glucosamine- and [35S]sulphate-labelled material was followed from the dorsal ganglia, along the sciatic nerve towards the gastrocnemius muscle. The distribution in different subcellular fractions, effect of cycloheximide and transport kinetics did not differ very much between fucose- and glucosamine-incorporation into the nerve. Cycloheximide blocked the synthesis of TCA-insoluble radioactivity, which was transported at a rate of 60–90 mm per day at 18°C, more effectively than the synthesis of stationary proteins in the ganglia. About 10 per cent of the TCA-insoluble and transported radioactivity was extracted by chloroform-methanol (2:1, v/v) and might be glycolipids and the rest glycoproteins. Results suggest that TCA-soluble activity, which was recovered in the nerve, originated in part from labelled macromolecules consumed along the axons. The rapidly transported TCA-insoluble radioactivity was 85 per cent particulate and mainly associated with structures sedimenting in the microsomal fraction. [35S]Sulphate-labelled TCA-insoluble material was resistant towards chloroform-methanol (2:1, v/v) extraction and rapidly transported from the ganglia into the nerve. The synthesis was inhibited by cycloheximide. The material, probably proteoglycans, represented a quantitatively minor part of transported glycoproteins.  相似文献   

7.
Tullidinol, a neurotoxin extracted from the Karwinskia humboldtiana fruit, dissolved in peanut oil was injected into the right sciatic nerve of adult cats. The contralateral sciatic nerve received an equivalent volume of peanut oil alone. The fast axonal transport of labeled ([3H]Leucine) protein was studied in sensory and motor axons of both sciatic nerves. The radioactive label was pressure injected either into the L7 dorsal root ganglion or the ventral region of the same spinal cord segment. Several days after the toxin injection, the cat limped and the Achilles tendon reflex was nearly absent in the right hind limb. The amount of transported label was decreased distal to the site of toxin injection. Proximal to this site, the transported material was dammed. Sensory and motor axons showed similar changes. In addition, the toxin produced demyelination and axonal degeneration. Axonal transport and the structure of the axons were normal in the contralateral nerve. Both, Schwann cells and axons of the right sciatic nerve showed globular inclusions, presumably oil droplets containing the toxin. We conclude that Schwann cells and axons as well are tullidinol targets.Departamento de Química. Centro de Investigación y de Estudios Avanzados del IPN.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

8.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

9.
Acrylamide is a neurotoxin known to impair regeneration of axons following nerve crush and to produce structurally abnormal regenerating sprouts. To investigate the mechanism of these abnormalities, protein synthesis and fast axonal transport were studied in acrylamide-intoxicated and control rats 2 weeks after sciatic nerve crush. Using an in vitro preparation of sciatic nerve-dorsal root ganglion, there was no difference in ganglion 3H-leucine incorporation between the two groups. In these preparations of sensory axons, as well as in motor axons studied in vivo, a smaller proportion of rapidly transported radioactivity was carried beyond the crush in the acrylamide-regenerating nerves compared to the control-regenerating nerves. Correlative ultrastructural studies demonstrated that this difference reflected the impaired outgrowth of the acrylamide-regenerating nerves, rather than an abnormality in fast transport. The acrylamide-treated sprouts often developed swellings filled with whorls of neurofilaments; in addition, many sprouts ended in massively enlarged growth cones containing membranous organelles. EM autoradiography showed labeled, rapidly transported organelles accumulated in the neurofilamentous whorls, and therefore suggested that these organelles might be “trapped” or impeded in passage through these regions. However, there was no evidence that the growth cones received insufficient amounts of transported protein; in fact, the distended endings were densely labeled and apparently “ballooned” by transported organelles. These results suggest that acrylamide intoxication does not impair regeneration by diminishing the delivery of rapidly transported materials to the growing tip. Rather, the marked distention of the growth cones is interpreted as the morphological consequence of continued delivery of rapidly transported organelles into sprouts unable to utilize them in outgrowth.  相似文献   

10.
After injection of the L7 dorsal root ganglion with 3H-leucine, fast axoplasmic transport carries some 3–5 × more labeled materials down the sensory fibers branches entering the sciatic nerve as compared to the dorsal root fiber branches of the neurons. Freeze-substitution preparations taken from the two sides of the lumbar seventh dorsal root ganglia of cats and monkeys showed little difference in the histograms of nerve fiber diameters of the sensory nerve fiber branch of these neurons as compared to the dorsal root fiber branches. A similar density of microtubules and of neurofilaments in the dorsal root and sensory nerve fiber branches over a wide range of fiber diameters was found in electron micrograph preparations. In the absence of an anatomical difference in the fibers to account for the asymmetrical outflow, a functional explanation based on the transport filament model was advanced.  相似文献   

11.
Summary Somatomedin C (Sm-C; insulin-like growth factor I; IGF-I) is a polypeptide (Mr 7649), often dependent on growth hormone (GH), with trophic effects on several different tissues. Monospecific IGF-I antisera were used to investigate its localization in the sciatic nerve and corresponding nerve cells, as well as its possible axoplasmic transport in the adult rat. IGF-I-like immunoreactivity was demonstrated in anterior horn motor nerve cells in the spinal cord and in spinal- and autonomic ganglion nerve cells. Faint IGF-I immunoreactivity was under normal conditions observed in axons of the sciatic nerve and in the Schwann cells. Using crush technique, accumulation of IGF-I immunoreactivity was seen in dilated axons within 2 h, both proximal and distal to the crush. However, only a small fraction of the anterogradely transported IGF-I immunoreactive material could be demonstrated to be transported in retrograde direction. Colchicine injected proximal to a crush prevented accumulation of IGF-I immunoreactivity proximal to the crush, but not distal to it.IGF-I-immunoreactive material is synthesized in the cell bodies of peripheral sensory and motor nerve cells. It is transported at rapid rates in the axoplasm of the sciatic nerve of adult rats both in anterograde and retrograde directions. We propose that axonally transported IGF-I may be released and exert trophic influence on innervated cells, tissues and organs.  相似文献   

12.
Axoplasmic transport along the optic axons was studied after intraocular injections of kainic acid (KA). Transport of labeled material did not initiate from the eye when KA was injected simultaneously with the protein precursor [3H]proline. When KA was injected after axoplasmic transport of labeled proteins had begun, no additional radioactive material moved out of the retinal ganglion cells. However, the labeled material already present in the optic nerve at the time of KA injection continued to move, and accumulated at the nerve endings. Although KA reduces the incorporation of precursor, this effect of KA on axoplasmic transport appears to be more than a consequence of inhibition on precursor uptake or protein synthesis. Recovery from this KA action began 6 h after exposure to KA and was about 50% recovered by 36 h. The extent of the recovery remained at this level for as long as a week, which suggested a partial recovery of the ganglion cells. A second exposure to KA after the inner plexiform layer had virtually disappeared was as effective as the first exposure in preventing the appearance of transported protein in the optic nerve, suggesting a direct action of KA on the ganglion cells. We interpreted the results to indicate that KA interferes with the initiation phase of axoplasmic transport in ganglion cells and this effect is partially reversible.  相似文献   

13.
In dorsal root ganglia and peripheral nerve of the rat and other species, nucleoside phosphatase and unspecific cholinesterase reaction products are found in the plasma membranes and spaces between them at two sites: (1) Schwann cell-axon interfaces and mesaxons of unmyelinated fibers, and (2) sheath cell-perikaryon interfaces and interfaces between adjacent sheath cells. Acetylcholinesterase reaction product is found in the perikaryon (within the endoplasmic reticulum) and the axon (axoplasmic surface). Nucleoside phosphatase reaction product is also found in the numerous vacuoles at the surface of perineurium cells, ganglion sheath cells, and cells surrounding some ganglion blood vessels. Nucleoside phosphatase activities in the sections fail to respond, in the manner described for "transport ATPase," to diisopropylphosphofluoridate, sodium and potassium ions, and ouabain. Nucleoside diphosphates are hydrolyzed more slowly than triphosphates in unmyelinated fibers, and are not hydrolyzed at the perikaryon surface. Nucleoside monophosphates are either not hydrolyzed or hydrolyzed very slowly. In contrast to these localizations, which are believed to demonstrate sites of enzyme activity, it is considered likely that diffusion artifacts account for the nucleoside phosphatase reaction product frequently found along the outer surfaces of myelinated fibers and within vacuoles at the Schwann cell surfaces of these fibers. The diffuse reaction product seen in basement membranes of ganglion and nerve may also be artifact.  相似文献   

14.
We compared the effects of glial cell line-derived neurotrophic factor (GDNF) on dorsal root ganglion (DRG) sensory neurons to that of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT-3). All of these factors were retrogradely transported to sub-populations of sensory neuron cell bodies in the L4/L5 DRG of neonatal rats. The size distribution of 125I-GDNF-labeled neurons was variable and consisted of both small and large DRG neurons (mean of 506.60 μm2). 125I-NGF was preferentially taken up by small neurons with a mean cross-sectional area of 383.03 μm2. Iodinated BDNF and NT-3 were transported by medium to large neurons with mean sizes of 501.48 and 529.27 μm2, respectively. A neonatal, sciatic nerve axotomy-induced cell death model was used to determine whether any of these factors could influence DRG neuron survival in vivo. GDNF and NGF rescued nearly 100% of the sensory neurons. BDNF and NT-3 did not promote any detectable level of neuronal survival despite the fact that they underwent retrograde transport. We examined the in vitro survival-promoting ability of these factors on neonatal DRG neuronal cultures derived from neonatal rats. GDNF, NGF, and NT-3 were effective in vitro, while BDNF was not. The range of effects seen in the models described here underscores the importance of testing neuronal responsiveness in more than one model. The biological responsiveness of DRG neurons to GDNF in multiple models suggests that this factor may play a role in the development and maintenance of sensory neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 22–32, 1997.  相似文献   

15.
An intraocular injection of [3H]proline was used to label rabbit retinal ganglion cells including components subjected to axonal transport. Degradation of rapidly axonally transported labelled proteins was estimated in an in vitro system using homogenates of the nerve terminal regions. The energy requirements of this proteolytic process was characterized, as well as the type of enzymatic system. Evidence was obtained for a proteolytic system, active at a neutral pH, which was dependent upon calcium ions and intact sulfhydryl group.  相似文献   

16.
32P-ATP was injected into the L5 dorsal root ganglion and axoplasmic transport of the phosphorylate MA proteins 2, microtubule-associated proteins 2, was observed. After the injection of 32P-ATP, the nerve was dissected out at prescribed time intervals and sliced into 5-mm pieces. Each segment was electrophoresed on an SDS-polyacrylamide slab gel and subjected to autoradiography. A protein of 310,000 dalton was transported at a velocity of 6.6-10.6 mm/day in the axon with the electrophoretic mobility identical to that of MA proteins 2, one of the key components associated with the microtubules.  相似文献   

17.
High resolution 2DGE (two-dimensional gel electrophoresis) was used to characterize neuronal and glial proteins of the rat optic nerve, to examine the phases of intraaxonal transport with which the neuronal proteins are associated, and to identify the ribosomal populations on which these proteins are synthesized. Neuronal proteins synthesized in the retinal ganglion cells were identified by injecting the eye with L-[35S]methionine, followed by 2DGE analysis of fast and slow axonally transported proteins in particulate and soluble fractions. Proteins synthesized by the glial cells were labeled by incubating isolated optic nerves in the presence of L-[35S]methionine and then analyzed by 2DGE. A number of differences were seen between filamentous proteins of neurons and glia. Most strikingly, proteins in the alpha- and beta-tubulin region of the 2D gels of glial proteins were distinctly different than was observed for axonal proteins. As expected, neurons but not glia expressed neurofilament proteins, which appeared among the slow axonally transported proteins in the particulate fraction; significant amounts of the glial filamentous protein, GFA, were also labeled under these conditions, which may have been due to transfer of amino acids from the axon to the glial compartment. The fast axonally transported proteins contained relatively large amounts of high-molecular-weight acidic proteins, two of which were shown to comigrate (on 2DGE) with proteins synthesized by rat CNS rough microsomes; this finding suggests that rough endoplasmic reticulum may be a major site of synthesis for fast transported proteins. In contrast, the free polysome population was shown to synthesize the principal components of slow axonal transport, including tubulin subunits, actin, and neurofilament proteins.  相似文献   

18.
Proteins synthesized by soma located in L4 dorsal root ganglia and supplied to the axonal branches extending centrally in the dorsal root and peripherally towards the sciatic nerve were analyzed for radioactivity following injections of [3H] leucine into the L4 dorsal root ganglia. All proteins located in the dorsal root and sciatic nerve were analyzed by SDS acrylamide gel electrophoresis at various times post injection. The differences in radioactivity between the dorsal root and sciatic nerve proteins were mainly quantitative and not qualitative, with many proteins of various molecular weight ranges being transported into both segments. Generally, it appears that in both axonal branches the high molecular weight proteins are transported at the highest rate, medium weights slower and low molecular weight proteins slowest. More proteins of high and low molecular weights are transported into the dorsal root whereas more of those of medium molecular weight are transported towards the sciatic nerve.  相似文献   

19.
Abstract— Utilizing an in vitro labeling procedure, the proteins carried by rapid axoplasmic transport in normal and regenerating sensory fibers of the rat sciatic nerve were compared. No statistically significant differences were found when the total amount of transported protein was compared in control and sectioned nerves at times from 2 to 76 days following axotomy. Fractionation of labeled proteins on polyacrylamide slab gels enabled the identification of some 25 individual transported proteins. By this criterion, no differences were detectable in the composition of proteins synthesized in the dorsal root ganglia from which sectioned vs control sciatic nerves project. When the electrophoretic distributions of transported proteins from control and sectioned nerves were compared, significant' differences were observed. The appearance and disappearance of two proteins were temporally related to chromatolytic changes in the nerve cell body. In addition, the composition of transported proteins in undamaged control nerves contralateral to the sectioned nerves exhibited changes which were not observed in either normal control nerves or sectioned nerves. Changes in the composition of transported proteins as a function of time following the onset of chromatolysis may be involved in controlling nerve regeneration in sensory nerve fibers.  相似文献   

20.
Abstract— Rapid axoplasmic transport was studied in dystrophic mice of the 129/ReJ-dy strain. Proteins transported in vivo through α-motoneurons of the sciatic nerve were labeled by injections of [3H] or [35S] amino acids into the ventral horn of the lumbar spinal cord. Following an 18 h incubation, axoplasmic transport was quantitated by summing the radioactivity in the 10 mm length of sciatic nerve proximal to a ligation. Although the amount of transported radioactivity was small, transport appeared depressed when adult dystrophic mice were compared to controls. Transport was also studied in the sensory fibers of the sciatic nerve under in vitro conditions, resulting in high levels of transported radioactivity. In this system transport was strongly depressed. The severity of the deficiency varied with age, being small in animals with early clinical signs and becoming maximal (80–90%) in animals over 60 days of age. Proteins transported by adult dy/dy and +/+ animals were compared by gel electrophoresis using double-label techniques. Transport of nearly all proteins was depressed in dy/dy mice, although the possibility exists that small differences occur. The data suggest that the dystrophic state produces a significant deficiency in rapid axoplasmic transport in both motor and sensory fibers, and may interfere with transport processes in all neurons. Since rapid axoplasmic transport has been associated with membranes, the data are consistent with a general alteration of cellular membranes in dystrophic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号