首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular cloning of lupin leghemoglobin cDNA   总被引:3,自引:0,他引:3  
Poly(A)+RNA isolated from root nodules of yellow lupin (Lupinus luteus, var. Ventus) has been used as a template for the construction of a cDNA library. The ds cDNA was synthesized and inserted into the Hind III site of plasmid pBR 322 using synthetic Hind III linkers. Clones containing sequences specific for nodules were selected by differential colony hybridization using32P-labeled cDNA synthesized either from nodule poly(A)+RNA or from poly(A)+RNA of uninfected root as probes. Among the recombinant plasmids, the cDNA gene for leghemoglobin was identified. The protein structure derived from its nucleotide sequence was consistent with known amino acid sequence of lupin Lb II. The cloned lupin Lb cDNA hybridized to poly(A)+RNA from nodules only, which is in accordance with the general concept, that leghemoglobin is expressed exclusively in nodules.  相似文献   

2.
An abundant 17 kDa protein which was isolated and characterized from 10-day old healthy root tissue of white lupin (Lupinus albus) proved to have a high sequence similarity to pathogenesis-related proteins found in other species. Subsequently, a corresponding clone (LaPR-10) was identified in a cDNA library prepared from the same tissue that exhibited a high amino acid sequence similarity to a number of the PR-10 family proteins. The clone contains an open reading frame encoding a polypeptide of 158 amino acids, with a predicted molecular mass of 16905 Da and an isoelectric point of 4.66. Southern blot analysis indicates that LaPR-10 is likely a single-copy gene, or a member of a small gene family. The clone was expressed in Escherichia coli, and its protein product was purified to near homogeneity. Both the native and the recombinant proteins were immunorecognized by antibodies raised against pea PR-10 proteins, and exhibited a ribonucleolytic activity against several RNA preparations, including lupin root total RNA. Characterization of its enzymatic properties indicates that the LaPR-10 protein belongs to the class II ribonucleases. We present evidence that the white lupin 17 kDa protein is constitutively expressed during all stages of root development and, to a lesser extent, in other plant parts. In addition, we demonstrate the presence, in the LaPR-10 amino acid sequence, of a number of motifs that are common to most PR-10 proteins, as well as a RGD motif that is shared only with the alfalfa SRG1 sequence.  相似文献   

3.
Two isoenzymic forms of aspartate aminotransferase are present in the plant fraction of developing lupin root nodules. One of these forms, aspartate aminotransferase-P2 (AAT-P2), increases dramatically with the onset of biological nitrogen fixation and is associated with the assimilation of ammonia by the plant in the Rhizobium-legume symbiosis. A day 18 lupin nodule cDNA library in the ZapII vector was immunoscreened with a monoclonal antibody specific for AAT-P2 and yielded two near-full-length 1700 bp clones. These clones were sequenced. Amino acid sequences from three peptides derived from immunopurified AAT-P2 were aligned, and showed 100% homology with the amino acid sequence deduced from the cDNA clones. The DNA sequence showed 50% homology with AAT sequences from a range of animal sources. Conversion of the clones to the phagemid form allowed their expression in Escherichia coli where both exhibited enzyme activity that could be immunoprecipitated with AAT-P2-specific monoclonal antibodies. Western blot analysis revealed protein moieties with molecular masses of 39, 43, 45 and 55 kDa. The 5 end of the clones coded for a hydrophobic leader sequence of about 50 amino acids indicative of a targeting sequence and consistent with the plastid localisation of nodule AAT-P2.  相似文献   

4.
L-asparaginase synthesis by Escherichia coli B   总被引:2,自引:0,他引:2  
We have studied the influence of strain of organism, temperature, and medium on the production of the antileukemic intracellular enzyme L-asparaginase by E. coli B grown in shaken flasks. Five strains of E. coli B exhibited wide differences in their capacities to synthesize the EC-2 form of L-asparaginase active against leukemia. For the most productive strain, when grown in a casein hydrolysate medium, maximal production of L-asparaginase occurred at 25°C. At this temperature, the organism required glycerol, glucose, or other mono-saccharides to synthesize L-asparaginase. Synthesis was stimulated when glycerol was used in place of glucose, but not in its presence. The effect of glycerol on L-asparaginase synthesis was most evident when the cells were grown at 37°C, rather than at 25°C. With 0.25% glucose, cells had a specific activity of 409 I.U./g; with glycerol cells had a specific activity of 553 I.U./g. At 25°C, both cell and L-asparaginase synthesis were increased by the use of 0.25% glycerol resulting in only a slight increase in specific activity of the cells. The addition of zinc, copper, manganese, iron, L-asparagine, L-glutamine, or L-aspartic acid had no effect on L-asparaginase synthesis in the casein hydrolysate medium. L-aspartic acid (10?2 M) enhanced L-asparaginase synthesis in a synthetic medium that lacked these metals or L-asparagine, L-glutamine, or L-aspartic acid; cells grown under these conditions had a specific activity of 90 I.U./g. In the casein hydrolysate medium, cell morphology was correlated with temperature of incubation.  相似文献   

5.
Host plant specificity was examined in symbiosis between Rhizobium strains isolated from legume-tree root nodules and herbaceous or woody legumes from which they were isolated. Strain GRH2 isolated from Acacia cyanophylla formed effective nodules on Acacia, Prosopis and Medicago sativa as well. Nitrogenase activity, measured as acetylene reduction, of strain GRH2 in symbiosis with Prosopis chilensis was the highest (P 0.05) among the tropical legumes studied and was similar to those found for other associations involving herbaceous legumes. Relative efficiency of nitrogenase varied from 0.3 to near 1 during the light time of the photoperiod. However no hydrogen uptake activity was detected by the amperometric method used. Rhizobium strains GRH3, GRH5 and GRH9 isolated from A. melanoxylon, P. chilensis and Sophora microphylla, respectively, also showed a very low host-range specificity. All isolates were infective and effective on at least one of the herbaceous legumes tested. These data demonstrate the lack of specificity of Rhizobium strains isolated from nitrogen-fixing tree root nodules and that these strains can form effective nodules on herbaceous legumes.  相似文献   

6.
7.
Summary Symbiotic nitrogen fixation in angiosperms normally occurs in buried root nodules and is severely inhibited in flooded soils. A few plant species, however, respond to flooding by forming nodules on stems, or, in one case, submerged roots with aerenchyma. We report here the novel occurrence of aerial rhizobial nodules attached to adventitious roots of the legume,Pentaclethra macroloba, in a lowland tropical rainforest swamp in Costa Rica. Swamp sapdings (1–10 cm diameter) support an average 12 g nodules dry weight per plant on roots 2–300 cm above water, and nodules remain in aerial positions at least 6 months. Collections from four swamp plants maintained linear activity rates (3–14 moles C2H4/g nodule dry weight/hr) throughout incubations for 6 and 13 hrs; excised nodule activity in most legumes declines after 1–2 hrs. Preliminary study of the anatomy and physiology suggest aerial nodules possess unusual features associated with tolerance to swamp conditions. High host tree abundance and nodulation in the swamp compared to upland sites indicate the aerial root symbiosis may contribute more fixed nitrogen to the local ecosystem than the more typical buried root symbiosis.  相似文献   

8.
9.
Two novel myb-like genes (atmyb6 and atmyb7) were isolated from an Arabidopsis thaliana cDNA library. The entire proteins or the Myb domains encoded by the genes were expressed as fusion proteins in Escherichia coli. The DNA-binding domain of the murine c-Myb was also expressed in the same way for use in comparative studies. The fusion proteins were examined for their DNA-binding activity using the animal c-Myb DNA-binding site (MBS) and the binding site of the maize P gene product (PBS). The Myb domain of Atmyb6 bound to PBS more efficiently than to MBS. Complete Atmyb6 and Atmyb7 proteins preferentially bound to PBS but not MBS. This suggests that the in vitro binding consensus sequences for both Atmyb6 and Atmyb7 are similar to PBS. The binding of the Myb domain of Atmyb6 to both PBS and MBS raises the possibility that the protein recognizes multiple sequences in vivo. The third α-helix and three adjacent amino acids in the third repeat (R3) of c-Myb were replaced with the analogous sequence of Atmyb6 to create a chimeric Myb protein. This chimeric protein bound to PBS with a low affinity but failed to bind to MBS. Thus the binding pattern of the chimeric Myb protein is similar to that of the Atmyb6. This result suggests that the last 20 amino acids in the R3 repeat of Atmyb6 play a major role in DNA-binding.  相似文献   

10.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

11.
小G蛋白Rop在植物细胞信号转导中发挥着重要的分子开关功能。该实验通过RT-PCR方法克隆了百脉根的一个Rop编码基因LjRac1,并对LjRac1基因序列进行生物信息学分析,然后采用半定量RT-PCR检测LjRac1基因在百脉根不同组织中的表达,用荧光实时定量PCR方法检测百脉根接种根瘤菌后LjRac1基因在不同阶段根系中的表达,构建过表达重组质粒,利用发根农杆菌介导的遗传转化法对LjRac1基因功能进行分析。结果表明:(1)序列分析显示,LjRac1完整编码区的cDNA序列长度为594bp,编码197个氨基酸,其编码蛋白具有典型的Rop家族保守结构域;同源分析显示,百脉根LjRac1与大豆GmRac1、野大豆GsRac1的一致性最高(94.42%)。(2)LjRac1基因在百脉根的根、茎、叶、根瘤和花中均有表达,且在根和根瘤中的表达水平较高;接种根瘤菌0.5h后,LjRac1基因在根系中的表达量呈显著升高趋势。(3)过表达转基因植株中LjRac1mRNA的表达水平为对照植株的14.3倍,且过表达植株的结瘤数目较对照明显增加。研究认为,LjRac1基因是一个受根瘤菌诱导增强表达的基因,过表达LjRac1基因可以引起植株结瘤数目的增加,说明LjRac1基因可能参与早期结瘤信号转导途径,从而在根瘤的发育中发挥一定作用。  相似文献   

12.
13.
We examined the development of the aquatic N2-fixing symbiosis between Rhizobium sp. (itNeptunia) and roots of Neptunia natans L. f. (Druce) (previously N. oleracea Lour.) under natural and laboratory conditions. When grown in its native marsh habitat, this unusual aquatic legume does not develop root hairs, the primary sites of rhizobial infection for most temperate legumes. Under natural conditions, the aquatic plant floats and develops nitrogen-fixing nodules at emergence of lateral roots on the primary root and on adventitious roots at stem nodes, but not from the stem itself. Cytological studies using various microscopies revealed that the mode of root infection involved an intercellular route of entry followed by an intracellular route of dissemination within nodule cells. After colonizing the root surface, the bacteria entered the primary root cortex through natural wounds caused by splitting of the epidermis and emergence of young lateral roots, and then stimulated early development of nodules at the base of such roots. The bacteria entered the nodule through pockets between separated host cells, then spread deeper in the nodule through a narrower intercellular route, and eventually evoked the formation of infection threads that penetrated host cells and spread throughout the nodule tissue. Bacteria were released from infection droplets at unwalled ends of infection threads, became enveloped by peribacteroid membranes, and transformed into enlarged bacteroids within symbiosomes. In older nodules, the bacteria within symbiosomes were embedded in an unusual, extensive fibrillar matrix. Cross-inoculation tests of 18 isolates of rhizobia from nodules of N. natans revealed a host specificity enabling effective nodulation of this aquatic legume, with lesser affinity for Medicago sativa and Ornithopus sp., and an inability to nodulate several other crop legume species. Acetylene reduction (N2 fixation) activity was detected in nodules of N. natans growing in aquatic habitats under natural conditions in Southern India. These studies indicate that a specific group of Rhizobium sp. (Neptunia) occupies a unique ecological niche in aquatic environments by entering into a N2-fixing root-nodule symbiosis with Neptunia natans.We thank J. Whallon for technical assistance, G. Truchet, J. Vasse, S. Wagener, J. Beaman, F. DeBruijn, F. Ewers, and A. Squartini for helpful comments, and N.N. Prasad and G. Birla for assistance in conducting field observations. This work was supported by the Michigan Agricultural Experiment Station and National Science Foundation grants DIR-8809640 and BIR-9120006 awarded to the MSU Center for Microbial Ecology. This study is dedicated to the memory of Dr. Joseph C. Burton, a friend and colleague who made many contributions to the study of the Rhizobiumlegume symbiosis.  相似文献   

14.
  1. L-Asparaginase (EC 3.5.1.1) from Escherichia coli A–l–3 was acetylated using acetic anhydride as a modifying chemical. The fully acetylated L-asparaginase retained 60% of the activity of the unmodified L-asparaginase.

  2. The acetylated L-asparaginase hydrolyzed D-asparagine and L-glutamine as well as L-asparagine in the same ratio as the unmodified L-asparaginase did.

  3. However, the effects of pH on the activity of the acetylated L-asparaginase showed very interesting differences from that of L-asparaginase. On the other hand, both L-asparaginase and the acetylated L-asparaginase exhibited similar pH activity curves on L-glutamine hydrolysis.

  4. The acetylated L-asparaginase was found to become more stable against acid or heat in the presence of L-aspartate than in its absence in the same manner as L-asparaginase was.

  相似文献   

15.
The root nodules of Melilotus alba DESR ., a fodder legume, contained high amounts of IAA. A tryptophan pool present in the nodule might serve as a source of IAA production. Presence of IAA oxidase and peroxidase in the nodules indicated the metabolism of IAA, at least in part, in the nodules. The Rhizobium species isolated from the root nodules produced a high amount of IAA (190 μg/ml) from L-tryptophan supplemented basal medium. IAA production and microbial growth were coincident. The production of IAA by the Rhizobium sp. was increased by 315% when the medium was supplemented with lactose (1%), NiCl2 (10 μg/ml), cetyl pyridinium chloride (0.5 μg/ml) and glutamic acid (0.4%), in addition to L-tryptophan (3 mg/ml). The possible role of the rhizobial production of IAA on the rhizobia-legume symbiosis is discussed.  相似文献   

16.
Summary Bacteria from the nodules ofLupinus angustifolius L.,L. digitatus Forsk., andL. luteus L. have been isolated, and the symbiotic relationships of nine of these strains and the three lupin species investigated in a glasshouse experiment. All symbioses were effective and no interaction or specificity was detected among the symbionts.Soil factors modified expression of the strains' symbiotic abilities in the field, but several strains have shown successful symbiosis with all three lupin species.One lupin species,L. digitatus, nodulates freely under natural conditions in Western Australia, whereasL. luteus andL. angustifolius do not. This lupin is more readily infected by native strains of rhizobia than the others.  相似文献   

17.
Wheeler  C. T.  McLaughlin  M. E.  Steele  P. 《Plant and Soil》1981,61(1-2):169-188
Summary Alnus glutinosa andAlnus rubra growing in the field in Scotland show specific nitrogenase activities of the same order of magnitude. The period of maximum potential nitrogenase activity coincides with that of maximum growth in late Spring and Summer. It is suggested that the retention of nitrogenase activity into the Autumn when growth has virtually ceased may be important as a contribution to the nitrogenous reserves of the tree.Bioassay of different Scottish soils, all collected from the locality of natural stands ofAlnus glutinosa, showed wide variation in the nodulation of seedlings, although generally a soil poor for nodulation ofAlnus glutinosa generally gave poor nodulation ofAlnus rubra. Soils of pH 4.5 to 6.5, best suited for growth and nitrogen fixation of the two species, often gave nodules showing highest specific nitrogen fixing activity. Young (2 to 3 year old) plants in glasshouse or controlled environment cabinet, inoculated withAlnus glutinosa endophyte, differed from mature field grown plants, however, sinceAlnus rubra required a much larger (up to 2.5 times) mass of root nodules to fix a unit quantity of N. Microscopic comparison of the nodules of glasshouse plants showed that the proportion of cells containing the vesicular (nitrogen fixing) form of the endophyte was only slightly lower inAlnus rubra than inAlnus glutinosa and it is suggested that the differences in specific nitrogen fixing activity between the two species may reflect some incompatibility of function of theAlnus glutinosa endophyte when in symbiosis withAlnus rubra.  相似文献   

18.
Abstract

Sucrose synthase (SuSy) is the main sucrose breakdown enzyme in plant sink tissues, including nodules, and is a possible candidate for the diversion of plant carbon to arbuscular mycorrhizal (AM) fungi in roots. We tested the involvement of SuSy in AM symbiosis of Glomus intraradices and Pisum sativum (pea). We observed that peas deficient in the predominant root isoform of SuSy were colonized successfully by AM fungi similar to wild-type roots. SuSy protein levels did not increase in roots as AM symbiosis developed, although SuSy protein levels did increase in nodules as the rhizobium symbiosis developed. Our results lead us to conclude that, unlike nodule symbiosis, SuSy protein does not limit or regulate carbon transfer in the AM symbiosis.  相似文献   

19.
20.
The expression of plant genes during symbiosis of Sesbania rostrata with Rhizobium sp. and Azorhizobium caulinodans was studied by comparing two-dimensional PAGE patterns of in vitro translation products of poly(A)+ RNA from uninfected roots and stems with that of root and stem nodules. Both types of nodules are essentially similar, particularly when stem nodules are formed in the dark. We detected the specific expression of at least 16 genes in stem and root nodules and observed the stimulated expression of about 10 other genes in both nodules. Six of the nodule-specific translation products (apparent molecular masses around 16 kDa) cross-react with an antiserum raised against leghemoglobin purified from Sesbania rostrata stem nodules. During stem nodule development, most of the nodule-stimulated genes are expressed concomitantly with leghemoglobin at day 12 after inoculation. However, some genes are already stimulated at days 6–7, some others later in development (day 18), and some are transiently activated. Patterns of root nodules induced by either Azorhizobium caulinodans strain ORS571, capable of effective root and stem nodulation, or Rhizobium sp. strain ORS51, capable of effective root nodulation only, are very similar except for a specific 37.5 kDa polypeptide. Several types of ineffective stem and root nodules were studied; in every case the amount of leghemoglobin components appeared reduced together with most of the nodule-stimulated polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号