首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hepatitis C virus (HCV) dysregulates innate immune responses and induces persistent viral infection. We previously demonstrated that HCV core protein impairs IL-12 expression by monocytes/macrophages (M/M(Φ)s) through interaction with a complement receptor gC1qR. Because HCV core-mediated lymphocyte dysregulation occurs through the negative immunomodulators programmed death-1 (PD-1) and suppressor of cytokine signaling-1 (SOCS-1), the aim of this study was to examine their role in HCV core-mediated IL-12 suppression in M/M(Φ)s. We analyzed TLR-stimulated, primary CD14(+) M/M(Φ)s from chronically HCV-infected and healthy subjects or the THP-1 cell line for PD-1, SOCS-1, and IL-12 expression following HCV core treatment. M/M(Φ)s from HCV-infected subjects at baseline exhibited comparatively increased PD-1 expression that significantly correlated with the degree of IL-12 inhibition. M/M(Φ)s isolated from healthy and HCV-infected individuals and treated with HCV core protein displayed increased PD-1 and SOCS-1 expression and decreased IL-12 expression, an effect that was also observed in cells treated with gC1qR's ligand, C1q. Blocking gC1qR rescued HCV core-induced PD-1 upregulation and IL-12 suppression, whereas blocking PD-1 signaling enhanced IL-12 production and decreased the expression of SOCS-1 induced by HCV core. Conversely, silencing SOCS-1 expression using small interfering RNAs increased IL-12 expression and inhibited PD-1 upregulation. PD-1 and SOCS-1 were found to associate by coimmunoprecipitation studies, and blocking PD-1 or silencing SOCS-1 in M/M(Φ) led to activation of STAT-1 during TLR-stimulated IL-12 production. These data suggested that HCV core/gC1qR engagement on M/M(Φ)s triggers the expression of PD-1 and SOCS-1, which can associate to deliver negative signaling to TLR-mediated pathways controlling expression of IL-12, a key cytokine linking innate and adaptive immunity.  相似文献   

3.
BackgroundWhile Syk has been shown to associate with TLR4, the immune consequences of Syk–TLR interactions and related molecular mechanisms are unclear.MethodsGain- and loss-of-function approaches were utilized to determine the regulatory function of Syk and elucidate the related molecular mechanisms in TLR4-mediated inflammatory responses. Cytokine production was measured by ELISA and phosphorylation of signaling molecules determined by Western blotting.ResultsSyk deficiency in murine dendritic cells resulted in the enhancement of LPS-induced IFNβ and IL-10 but suppression of pro-inflammatory cytokines (TNFα, IL-6). Deficiency of Syk enhanced the activity of PI3K and elevated the phosphorylation of PI3K and Akt, which in turn, lead to the phospho-inactivation of the downstream, central gatekeeper of the innate response, GSK3β. Inhibition of PI3K or Akt abrogated the ability of Syk deficiency to enhance IFNβ and IL-10 in Syk deficient cells, confirmed by the overexpression of Akt (Myr–Akt) or constitutively active GSK3β (GSK3 S9A). Moreover, neither inhibition of PI3K–Akt signaling nor neutralization of de novo synthesized IFNβ could rescue TNFα and IL-6 production in LPS-stimulated Syk deficient cells. Syk deficiency resulted in decreased phosphorylation of IKKβ and the NF-κB p65 subunit, further suggesting a divergent influence of Syk on pro- and anti-inflammatory TLR responses.ConclusionsSyk negatively regulates TLR4-mediated production of IFNβ and IL-10 and promotes inflammatory responses in dendritic cells through divergent regulation of downstream PI3K–Akt and NF-κB signaling pathways.General significanceSyk may represent a novel target for manipulating the direction or intensity of the innate response, depending on clinical necessity.  相似文献   

4.
5.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

6.
There is accumulating evidence that the complement activation product, C5a, can orchestrate cellular immune functions. IL-27(p28/EBI3) is an emerging key player essential for regulating inflammatory responses and T cells. In this article, we report that C5a robustly suppressed IL-27(p28) gene expression and release in peritoneal macrophages. These cells from C57BL/6J mice abundantly produced IL-27(p28) after engagement of either the TLR3 (polyinosinic-polycytidylic acid) or TLR4 (LPS) receptor. Genetic deficiency of either TLR4 or LBP completely incapacitated the ability of macrophages to secrete IL-27(p28) in response to LPS. IL-27(p28)-producing macrophages also expressed the C5aR receptor, thus displaying an IL-27(p28)(+)F4/80(+)C5aR(+) phenotype. C5a suppressed IL-27(p28) in LPS-stimulated macrophages via interactions with the C5aR receptor rather than the C5L2 receptor. After endotoxemia, C5aR(-/-) mice displayed higher plasma levels of IL-27(p28) compared with C57BL/6J mice. C5a did not affect the release of IL-27(p28) or the frequency of IL-27(p28)(+)F4/80(+) macrophages after engagement of TLR3. Mechanistically, LPS activated both the NF-κB and the PI3K/Akt pathways, whereas C5a activated only the PI3K/Akt pathway. Engagement of PI3K/Akt was inhibitory for IL-27(p28) production, because PI3K/Akt pharmacologic blockade resulted in increased amounts of IL-27(p28) and reversed the suppressive effects of C5a. Blockade of PI3K/Akt in endotoxemic C57BL/6J mice resulted in higher generation of IL-27(p28). In contrast, the PI3K/Akt pathway was not involved in TLR3-mediated release of IL-27(p28). These data provide new evidence about how complement activation may selectively interfere with production of T cell regulatory cytokines by APCs in the varying contexts of either bacterial (TLR4 pathway) or viral (TLR3 pathway) infection.  相似文献   

7.
Zhang Y  Ma CJ  Wang JM  Ji XJ  Wu XY  Jia ZS  Moorman JP  Yao ZQ 《PloS one》2011,6(5):e19664
T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection.  相似文献   

8.
The complement system is a classic central player in innate immunity. Most pathogens activate both complement and the toll-like receptor (TLR) pathway. Therefore, to provide a more comprehensive understanding of innate immunity, it is important to understand the crosstalk between these two systems. Mouse macrophages produce IL-12 and IL-10 in response to TLR ligands such as LPS, CpG, Poly I:C and Malp2. The TLR-induced IL-12 production was decreased, while that of IL-10 was increased by concurrent stimulation with a complement fragment C5a. Pharmacological studies have suggested that C5a regulates TLR4-induced IL-12 production in a phosphoinositide 3-kinase (PI3K)-dependent mechanism. In the present study, however, we found that the C5a-mediated changes can be observed in macrophages from mice lacking PI3K p85α or PI3K p110γ. The result indicates that the C5a action is PI3K-independent; neither class IA nor class IB PI3K subtype is involved in this regulation. The actions of C5a were sensitive to pertussis toxin and PD98059, suggesting a role of G protein-mediated activation of the Erk1/2 pathway.  相似文献   

9.
Complement plays a pivotal role in the regulation of innate and adaptive immunity. It has been shown that the binding of C1q, a natural ligand of gC1qR, on T cells inhibits their proliferation. Here, we demonstrate that direct binding of the hepatitis C virus (HCV) core to gC1qR on T cells leads to impaired Lck/Akt activation and T-cell function. The HCV core associates with the surface of T cells specifically via gC1qR, as this binding is inhibited by the addition of either anti-gC1qR antibody or soluble gC1qR. The binding affinity constant of core protein for gC1qR, as determined by BIAcore analysis, is 3.8 x 10(-7) M. The specificity of the HCV core-gC1qR interaction is confirmed by reduced core binding on Molt-4 T cells treated with gC1qR-silencing small interfering RNA and enhanced core binding on GPC-16 guinea pig cells transfected with human gC1qR. Interestingly, gC1qR is expressed at higher levels on CD8(+) than on CD4(+) T cells, resulting in more severe core-induced suppression of the CD8(+)-T-cell population. Importantly, T-cell receptor-mediated activation of the Src kinases Lck and ZAP-70 but not Fyn and the phosphorylation of Akt are impaired by the HCV core, suggesting that it inhibits the very early events of T-cell activation.  相似文献   

10.
Yan X  Xiu F  An H  Wang X  Wang J  Cao X 《Life sciences》2007,80(4):307-313
Fever improves survival and shortens disease duration in microbial infections. However, the mechanisms of these beneficial responses still remain elusive. Toll-like receptors (TLRs) play important roles in sensing microbes invading and therefore we hypothesized that fever range temperature may enhance responsiveness of dendritic cells (DCs) to lipopolysaccharide (LPS) by promoting TLR4 expression and signaling. In this study, we found that pretreatment of DCs with 39.5 degrees C temperature can up-regulate TLR4 expression in DCs and enhances LPS-induced DC production of interleukins (IL) IL-6, IL-10 and IL-12 but not tumor necrosis factor alpha (TNF-alpha). Blockade of the autocrine action of IL-10 could increase LPS-induced TNF-alpha and IL-12 production in DCs. Further experiments confirmed that TLR4 ligation activates extracellular signal-regulated kinase (ERK), p38, and nuclear factor-kappaB pathways more potently in DCs pretreated with 39.5 degrees C. We conclude that fever range temperature can promote TLR4 expression and signaling in DCs, leading to enhancement of immune responses to inflammatory stimuli. These results might reveal a possible mechanistic explanation for the significance of fever in activating innate immune responses.  相似文献   

11.
Ligands for certain G(i)-protein-coupled receptors (GiPCRs) potently inhibit the production of IL-12 by human monocytes. We addressed the intracellular signaling mechanisms by which this occurs using primary human cells. Stimulation with the GiPCR ligands C5a and 1-deoxy-1-[6-[(3-iodophenyl)methyl]amino]-9H-purine-9-y1]-N-methyl-beta-D-ribofuranuronamide (IB-MECA) blocked the production of IL-12 p70 by human monocytes stimulated with LPS and IFN-gamma. In addition, C5a reduced the expression of mRNA for IL-12 p35, p40, IL-23 p19, and IL-27 p28. This effect was due neither to a down-regulation of TLR4 or IFN-gamma receptor on the cell surface nor to interference with IFN-gamma signaling, because IFN-gamma-induced up-regulation of HLA-DR and CD40 were unaffected. C5a or IB-MECA activated the PI3K/Akt signaling pathway and induced the phosphorylation of the MAPK p38, ERK, and JNK. Inhibition of the PI3K/Akt signaling pathway with wortmannin or an inhibitor of Akt activity, and inhibition of JNK but not ERK prevented IL-12 and IL-23 suppression by C5a. These data extend observations on IL-12 suppression by C5a to IL-23 and IL-27, and are the first to demonstrate the intracellular signaling events leading to IL-12 and IL-23 inhibition after GiPCR activation.  相似文献   

12.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

13.
Dendritic cell (DC)-derived cytokines play a key role in specifying adaptive immune responses tailored to the type of pathogen encountered and the local tissue environment. However, little is known about how DCs perceive the local environment. We investigated whether endogenous Notch signaling could affect DC responses to pathogenic stimuli. We demonstrate that concurrent Notch and TLR stimulation results in a unique cytokine profile in mouse bone-marrow derived DCs characterized by enhanced IL-10 and IL-2, and reduced IL-12 expression compared with TLR ligation alone. Unexpectedly, modulation of cytokine production occurred through a noncanonical Notch signaling pathway, independent of γ-secretase activity. Modulation required de novo protein synthesis, and PI3K, JNK, and ERK activity were necessary for enhanced IL-2 expression, whereas modulation of IL-10 required only PI3K activity. Further, we show that this γ-secretase-independent Notch pathway can induce PI3K activity. In contrast, expression of the canonical Notch target gene Hes1 was suppressed in DCs stimulated with Notch and TLR ligands simultaneously. Thus, our data suggest that Notch acts as an endogenous signal that modulates cytokine expression of DCs through a noncanonical pathway and therefore has the potential to tailor the subsequent adaptive immune response in a tissue- and/or stage-dependent manner.  相似文献   

14.
Toll-like receptor 2 (TLR2) plays an essential role in innate immunity by the recognition of a large variety of pathogen-associated molecular patterns. It induces its recruitment to lipid rafts induces the formation of a membranous activation cluster necessary to enhance, amplify, and control downstream signaling. However, the exact composition of the TLR2-mediated molecular complex is unknown. We performed a proteomic analysis in lipopeptide-stimulated THP1 and found IMPDHII protein rapidly recruited to lipid raft. Whereas IMPDHII is essential for lymphocyte proliferation, its biologic function within innate immune signal pathways has not been established yet. We report here that IMPDHII plays an important role in the negative regulation of TLR2 signaling by modulating PI3K activity. Indeed, IMPDHII increases the phosphatase activity of SHP1, which participates to the inactivation of PI3K.  相似文献   

15.
We previously demonstrated that Mycobacterium tuberculosis (M. tbc)-induced interleukin (IL)-12 expression is negatively regulated by the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) 1/2 pathways in human monocyte-derived macrophages (MDMs). To extend these studies, we examined the nature of the involvement of toll-like receptors (TLRs) and intracellular signalling pathways downstream from PI3K in M. tbc-induced IL-23 expression in human MDMs. M. tbc-induced Akt activation and IL-23 expression were essentially dependent on TLR2. Blockade of the mammalian targets of rapamycin (mTOR)/70 kDa ribosomal S6 kinase 1 (S6K1) pathway by the specific inhibitor rapamycin greatly enhanced M. tbc-induced IL-12/IL-23 p40 (p40) and IL-23 p19 (p19) mRNA and IL-23 protein expression. In sharp contrast, p38 mitogen-activated protein kinase (MAPK) inhibition abrogated the p40 and p19 mRNA and IL-23 protein expression induced by M. tbc. Furthermore, the inhibition of PI3K-Akt, but not ERK 1/2 pathway, attenuated M. tbc-induced S6K1 phosphorylation, whereas PI3K inhibition enhanced p38 phosphorylation and apoptosis signal-regulating kinase 1 activity during exposure to M. tbc. Although the negative or positive regulation of IL-23 was not reversed by neutralization of IL-10, it was significantly modulated by blocking TLR2. Collectively, these findings provide new insight into the homeostatic mechanism controlling type 1 immune responses during mycobacterial infection involving the intracellular network of PI3K, S6K1, ERK 1/2 and p38 MAPK pathways in a TLR2-dependent manner.  相似文献   

16.
Microcrystals of calcium pyrophosphate dihydrate (CPPD) and monosodium urate (MSU) deposited in synovium and articular cartilage initiate joint inflammation and cartilage degradation in large part by binding and directly activating resident cells. TLRs trigger innate host defense responses to infectious pathogens, and the expression of certain TLRs by synovial fibroblasts has revealed the potential for innate immune responses to be triggered by mesenchymally derived resident cells in the joint. In this study we tested the hypothesis that chondrocytes also express TLRs and that one or more TLRs centrally mediate chondrocyte responsiveness to CPPD and MSU crystals in vitro. We detected TLR2 expression in normal articular chondrocytes and up-regulation of TLR2 in osteoarthritic cartilage chondrocytes in situ. We demonstrated that transient transfection of TLR2 signaling-negative regulator Toll-interacting protein or treatment with TLR2-blocking Ab suppressed CPPD and MSU crystal-induced chondrocyte release of NO, an inflammatory mediator that promotes cartilage degeneration. Conversely, gain-of-function of TLR2 in normal chondrocytes via transfection was associated with increased CPPD and MSU crystal-induced NO release. Canonical TLR signaling by parallel pathways involving MyD88, IL-1R-associated kinase 1, TNF receptor-associated factor 6, and IkappaB kinase and Rac1, PI3K, and Akt critically mediated NO release in chondrocytes stimulated by both CPPD and MSU crystals. We conclude that CPPD and MSU crystals critically use TLR2-mediated signaling in chondrocytes to trigger NO generation. Our results indicate the potential for innate immunity at the level of the articular chondrocyte to directly contribute to inflammatory and degenerative tissue reactions associated with both gout and pseudogout.  相似文献   

17.

Background

Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn) could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK), glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K) pathways on biological functions of human monocyte-derived DCs treated with BbC50sn.

Methodology/Principal Findings

DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS) or Zymosan, with or without specific inhibitors of p38MAPK (SB203580), ERK (PD98059), PI3K (LY294002) and GSK3 (SB216763). We found that 1) the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2) p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3) ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4) BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS.

Conclusion/Significance

We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria.  相似文献   

18.
Viruses use diverse strategies to impair the antiviral immunity of host in order to promote infection and pathogenesis. Herein, we found that PCV2 infection promotes the infection of DNA viruses through inhibiting IFN-β induction in vivo and in vitro. In the early phase of infection, PCV2 promotes the phosphorylation of cGAS at S278 via activation of PI3K/Akt signaling, which directly silences the catalytic activity of cGAS. Subsequently, phosphorylation of cGAS at S278 can facilitate the K48-linked poly-ubiquitination of cGAS at K389, which can been served as a signal for recognizing by the ubiquitin-binding domain of histone deacetylase 6 (HDAC6), to promote the translocation of K48-ubiquitinated-cGAS from cytosol to autolysosome depending on the deacetylase activity of HDAC6, thereby eventually resulting in a markedly increased cGAS degradation in PCV2 infection-induced autophagic cells relative to Earle’s Balanced Salt Solution (EBSS)-induced autophagic cells (a typical starving autophagy). Importantly, we found that PCV2 Cap and its binding protein gC1qR act as predominant regulators to promote porcine cGAS phosphorylation and HDAC6 activation through mediating PI3K/AKT signaling and PKCδ signaling activation. Based on this finding, gC1qR-binding activity deficient PCV2 mutant (PCV2RmA) indeed shows a weakened inhibitory effect on IFN-β induction and a weaker boost effect for other DNA viruses infection compared to wild-type PCV2. Collectively, our findings illuminate a systematic regulation mechanism by which porcine circovirus counteracts the cGAS-STING signaling pathway to inhibit the type I interferon induction and promote DNA virus infection, and identify gC1qR as an important regulator for the immunosuppression induced by PCV2.  相似文献   

19.
Innate immune responses triggered by the prototypical inflammatory stimulus LPS are mediated by TLR4 and involve the coordinated production of a multitude of inflammatory mediators, especially IL-6, which signals via the shared IL-6 cytokine family receptor subunit gp130. However, the exact role of IL-6, which can elicit either proinflammatory or anti-inflammatory responses, in the pathogenesis of TLR4-driven inflammatory disorders, as well as the identity of signaling pathways activated by IL-6 in a proinflammatory state, remain unclear. To define the contribution of gp130 signaling events to TLR4-driven inflammatory responses, we combined genetic and therapeutic approaches based on a series of gp130(F/F) knock-in mutant mice displaying hyperactivated IL-6-dependent JAK/STAT signaling in an experimental model of LPS/TLR4-mediated septic shock. The gp130(F/F) mice were markedly hypersensitive to LPS, which was associated with the specific upregulated production of IL-6, but not TNF-α. In gp130(F/F) mice, either genetic ablation of IL-6, Ab-mediated inhibition of IL-6R signaling or therapeutic blockade of IL-6 trans-signaling completely protected mice from LPS hypersensitivity. Furthermore, genetic reduction of STAT3 activity in gp130(F/F):Stat3(+/-) mice alleviated LPS hypersensitivity and reduced LPS-induced IL-6 production. Additional genetic approaches demonstrated that the TLR4/Mal pathway contributed to LPS hypersensitivity and increased IL-6 production in gp130(F/F) mice. Collectively, these data demonstrate for the first time, to our knowledge, that IL-6 trans-signaling via STAT3 is a critical modulator of LPS-driven proinflammatory responses through cross-talk regulation of the TLR4/Mal signaling pathway, and potentially implicate cross-talk between JAK/STAT and TLR pathways as a broader mechanism that regulates the severity of the host inflammatory response.  相似文献   

20.
Lipopolysaccharide (LPS) is recognized by CD14 with Toll-like receptor 4 (TLR4), and initiates 2 major pathways of TLR4 signaling, the MyD88-dependent and TRIF-dependent signaling pathways. The MyD88-dependent pathway induces inflammatory responses such as the production of TNF-α, IL-6, and IL-12 via the activation of NFκB and MAPK. The TRIF-dependent pathway induces the production of type-I IFN, and RANTES via the activation of IRF-3 and NFκB, and is also important for the induction of adaptive immune responses. CD14 plays a critical role in initiating the TRIF-dependent signaling pathway response to LPS, to support the internalization of LPS via endocytosis. Here, we clearly demonstrate that intracellular delivery of LPS by LPS-formulated liposomes (LPS-liposomes) initiate only TRIF-dependent signaling via clathrin-mediated endocytosis, independent of CD14. In fact, LPS-liposomes do not induce the production of TNF-α and IL-6 but induce RANTES production in peritoneal macrophages. Additionally, LPS-liposomes could induce adaptive immune responses effectively in CD14-deficient mice. Collectively, our results strongly suggest that LPS-liposomes are useful as a TRIF-dependent signaling-based immune adjuvant without inducing unnecessary inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号