首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In order to associate specific fiber projections in the central nervous system with specific target neurons, procedures were developed in which the anterograde neuroanatomical tracing technique utilizing Phaseolus vulgaris-leucoagglutinin (PHA-L) is combined with immunocytochemistry of three (different) neuronal markers: gammaamino butyric acid, choline acetyltransferase, and serotonin. A double, indirect, peroxidase-antiperoxidase staining method is used on free-floating brain sections. The primary antiserum against the PHA-L (first primary antiserum) is mixed with the primary antiserum against the neuronal marker (second primary antiserum). These primary antisera are raised in different animal species. Following the incubation in the cocktail of primary antisera, the sections are incubated in a cocktail of two secondary antisera. The transported PHA-L is then visualized by incubation in a peroxidase-antiperoxidase complex and subsequent reaction with nickel-enhanced diaminobenzidine/H2O2 (blue reaction product in PHA-L-labeled neurons and fibers). Incubation is continued with peroxidase-antiperoxidase antibodies raised in the animal species in which the second primary antiserum is developed, and the staining is completed by treatment with diaminobenzidine/H2O2 (brown reaction product in the target neurons). The present results suggest that PHA-L-tracing can be combined with immunocytochemistry of a variety of target neuron-related antigens.  相似文献   

2.
By the neuroanatomical tracing technique based on uptake, transport, and immunocytochemical detection of injected Phaseolus vulgaris leucoagglutinin (PHA-L), fiber trajectories of labeled neurons can be followed with great accuracy to their termination areas. To further analyze the connectivity of these fibers, the target neurons must be chemically characterized. In vibratome and frozen sections of rat brain, we tried to visualize PHA-L-labeled fibers and, simultaneously, the target neuron-related antigen. As a model system we used the projection from the pre-frontal cortex to histaminergic neurons in the posterior hypothalamic region. We tested "sequential" and "pooled" immunocytochemical procedures. In the sequential procedure, the two antigens are detected by two successive and complete immunocytochemical staining procedures, with primary antibodies raised in different animal species and with different chromogens for the final visualization. In the pooled procedure, the sections are incubated with mixtures of primary and secondary antibodies, after which the procedure is similar to the sequential procedure. We obtained excellent results on vibratome sections with a sequential procedure using first conventional peroxidase immunocytochemistry (goat anti-PHA-L primary antibody) to visualize the transported PHA-L (brown reaction product), and subsequently alkaline phosphatase immunocytochemistry (rabbit anti-histidine decarboxylase primary antibody) to locate the histaminergic neurons (blue reaction product). The resulting preparations deteriorate, however, after 1-2 months of storage. Good results were also obtained with a double peroxidase procedure on frozen sections, using nickel-enhanced diaminobenzidine to visualize the PHA-L (dark blue reaction product), and diaminobenzidine (brown reaction product) to visualize the second antigen. The quality of these preparations is permanent.  相似文献   

3.
The morphology of confirmed projection neurons in the dorsal lateral geniculate nucleus (dLGN) of the rat was examined by filling these cells retrogradely with biotinylated dextran amine (BDA) injected into the visual cortex. BDA-labeled projection neurons varied widely in the shape and size of their cell somas, with mean cross-sectional areas ranging from 60–340 µm2. Labeled projection neurons supported 7–55 dendrites that spanned up to 300 µm in length and formed dendritic arbors with cross-sectional areas of up to 7.0×104 µm2. Primary dendrites emerged from cell somas in three broad patterns. In some dLGN projection neurons, primary dendrites arise from the cell soma at two poles spaced approximately 180° apart. In other projection neurons, dendrites emerge principally from one side of the cell soma, while in a third group of projection neurons primary dendrites emerge from the entire perimeter of the cell soma. Based on these three distinct patterns in the distribution of primary dendrites from cell somas, we have grouped dLGN projection neurons into three classes: bipolar cells, basket cells and radial cells, respectively. The appendages seen on dendrites also can be grouped into three classes according to differences in their structure. Short “tufted” appendages arise mainly from the distal branches of dendrites; “spine-like” appendages, fine stalks with ovoid heads, typically are seen along the middle segments of dendrites; and “grape-like” appendages, short stalks that terminate in a cluster of ovoid bulbs, appear most often along the proximal segments of secondary dendrites of neurons with medium or large cell somas. While morphologically diverse dLGN projection neurons are intermingled uniformly throughout the nucleus, the caudal pole of the dLGN contains more small projection neurons of all classes than the rostral pole.  相似文献   

4.
In order to associate specific fiber projections in the central nervous system with specific target neurons, procedures were developed in which the anterograde neuroanatomical tracing technique utilizing Phaseolus vulgaris-leucoagglutinin (PHA-L) is combined with immunocytochemistry of three (different) neuronal markers: gamma-amino butyric acid, choline acetyltransferase, and serotonin. A double, indirect, peroxidase-antiperoxidase staining method is used on free-floating brain sections. The primary antiserum against the PHA-L (first primary antiserum) is mixed with the primary antiserum against the neuronal marker (second primary antiserum). These primary antisera are raised in different animal species. Following the incubation in the cocktail of two secondary antisera. The transported PHA-L is then visualized by incubation in a peroxidase-antiperoxidase complex and subsequent reaction with nickel-enhanced diaminobenzidine/H2O2 (blue reaction product in PHA-L-labeled neurons and fibers). Incubation is continued with peroxidase-antiperoxidase antibodies raised in the animal species in which the second primary antiserum is developed, and the staining is completed by treatment with diaminobenzidine/H2O2 (brown reaction product in target neurons). The present results suggest that PHA-L-tracing can be combined with immunocytochemistry of a variety of target neuron-related antigens.  相似文献   

5.
Neural circuits are exquisitely organized, consisting of many different neuronal subpopulations. However, it is difficult to assess the functional roles of these subpopulations using conventional extracellular recording techniques because these techniques do not easily distinguish spikes from different neuronal populations. To overcome this limitation, we have developed PINP (Photostimulation-assisted Identification of Neuronal Populations), a method of tagging neuronal populations for identification during in vivo electrophysiological recording. The method is based on expressing the light-activated channel channelrhodopsin-2 (ChR2) to restricted neuronal subpopulations. ChR2-tagged neurons can be detected electrophysiologically in vivo since illumination of these neurons with a brief flash of blue light triggers a short latency reliable action potential. We demonstrate the feasibility of this technique by expressing ChR2 in distinct populations of cortical neurons using two different strategies. First, we labeled a subpopulation of cortical neurons—mainly fast-spiking interneurons—by using adeno-associated virus (AAV) to deliver ChR2 in a transgenic mouse line in which the expression of Cre recombinase was driven by the parvalbumin promoter. Second, we labeled subpopulations of excitatory neurons in the rat auditory cortex with ChR2 based on projection target by using herpes simplex virus 1 (HSV1), which is efficiently taken up by axons and transported retrogradely; we find that this latter population responds to acoustic stimulation differently from unlabeled neurons. Tagging neurons is a novel application of ChR2, used in this case to monitor activity instead of manipulating it. PINP can be readily extended to other populations of genetically identifiable neurons, and will provide a useful method for probing the functional role of different neuronal populations in vivo.  相似文献   

6.
The globus pallidus externus (GP) is a nucleus of the basal ganglia (BG), containing GABAergic projection neurons that arborize widely throughout the BG, thalamus and cortex. Ongoing work seeks to map axonal projection patterns from GP cell types, as defined by their electrophysiological and molecular properties. Here we use transgenic mice and recombinant viruses to characterize parvalbumin expressing (PV+) GP neurons within the BG circuit. We confirm that PV+ neurons 1) make up ~40% of the GP neurons 2) exhibit fast-firing spontaneous activity and 3) provide the major axonal arborization to the STN and substantia nigra reticulata/compacta (SNr/c). PV+ neurons also innervate the striatum. Retrograde labeling identifies ~17% of pallidostriatal neurons as PV+, at least a subset of which also innervate the STN and SNr. Optogenetic experiments in acute brain slices demonstrate that the PV+ pallidostriatal axons make potent inhibitory synapses on low threshold spiking (LTS) and fast-spiking interneurons (FS) in the striatum, but rarely on spiny projection neurons (SPNs). Thus PV+ GP neurons are synaptically positioned to directly coordinate activity between BG input nuclei, the striatum and STN, and thalamic-output from the SNr.  相似文献   

7.
The development of the retino-tectal projection in Rana pipiens has been studied by the intraocular injection of small amounts of [3H]proline at late embryonic and at several larval stages. After survival periods varying from 1–24 hr the distribution of the radioactively labeled proteins in the axons of the retinal ganglion cells was studied autoradiographically. It is evident from the appearance of labeled proteins in the optic nerve and chiasm at late embryonic and early larval stages that there is a rapid phase of axonal transport at these stages and that some fraction of the materials transported in this phase are distributed to the tips of the growing axons.The first retinal fibers reach the contralateral optic tectum at embryonic Stage 22; at this stage they are confined to the rostrolateral portion of the tectum where the first tectal neurons are generated. At successively later stages the fibers appear to grow across the surface of the tectum in a general rostrolateral to caudomedial direction, reaching the dorsal part of the mid-tectum at larval Stage II and the lateral part of its caudal third by Stage V. However, it is not until relatively late larval stages (XVIII) that the fibers reach the caudomedial region of the tectum, and it is only at the time of metamorphosis (Stage XXV) that the retinal projection appears to cover the entire tectum.  相似文献   

8.
Antennal lobe interneurons of male Spodoptera littoralis (Boisd.) were investigated by using intracellular recording and staining techniques. Physiological and morphological characteristics of local interneurons and projection neurons responding to sex pheromone and plant-associated volatiles are described. The interneurons identified were divided into three groups, depending on their physiological response characteristics. Both types of interneurons, local interneurons and projection neurons, were described in all three groups. 1. Interneurons responding exclusively to sex pheromone stimuli, displayed different degrees of specificity. These neurons responded to either one, two, three or all four of the single sex pheromone or sex pheromone-like compounds tested. Most of these neurons also responded to a mixture of the two pheromone components present in the female S. littoralis blend. Two local interneurons and one projection neuron were identified as blend specialists, not responding to the single female produced sex pheromone components, but only to their mixture. Five pheromone specific projection neurons arborized in one or more subcompartments of the macroglomercular complex (MGC) and some of them had axonal branches in the calyces of the mushroom body and in different parts of the lateral protocerebrum. 2. Interneurons responding only to plant-associated volatiles varied highly in specificity. Neurons responding to only one of the stimuli, neurons responding to a variety of different odours and one neuron responding to all stimuli tested, were found. Three specialized local interneurons had arborizations only in ordinary glomeruli. One specialized and three less specialized local interneurons had arborizations within the MGC and the ordinary glomeruli. The projection neurons responding only to plant-associated volatiles had mostly uni- or multiglomerular arborizations within the ordinary glomeruli. 3. Interneurons responding to both sex pheromones and plant-associated stimuli varied in specificity. Individual interneurons that responded to few plant-associated odours mostly responded to several pheromone stimuli as well. Projection neurons responding to most of the plant-associated volatiles also responded to all pheromone stimuli. Two local interneurons responding to both stimulus groups, arborized within the MGC and the ordinary glomeruli. Projection neurons mostly arborized in only one ordinary glomerulus or in one compartment of the MGC. The variation in specificity and sensitivity of antennal lobe interneurons and structure-function correlations are discussed.  相似文献   

9.
The presence of an efficient uptake system for l-pyroglutamate was demonstrated in cultured glial cells originating from newborn rats. This compound is also transported by a high affinity uptake mechanism in neurons cultured from rat embryos cerebral hemispheres, but the Vmax is 6 times lower than for glial cells. It is shown that l-pyroglutamate like l-glutamate is preferentially transported by glial cells, but with a Vmax 40 to 60 times lower than for glutamate. The metabolism of l-pyroglutamate was also studied in cultured rat neuronal and glial cells, using l-[3H]pyroglutamate. Pyroglutamate, its metabolites and the various amino acids were separated by thin-layer electrophoresis. [3H]Pyroglutamate is more actively metabolised in glial cells than in neurons and glutamate is the main metabolite. Glutamate maximal specific activity is 4 times higher in glial than in neuronal cultures. It should also be noted that some [3H]pyroglutamate is transformed in [3H]GABA after longer incubation periods, but only in neurons. These results show the importance of glial cells for pyroglutamate uptake and metabolism in nervous tissue. They also suggest that pyroglutamate may interfere with glutamate neurotransmission in vivo.  相似文献   

10.
The sensory projection of homoeotic tarsal neurons in the antennal mutant spineless-aristapedia (ssa) is compared with the projections of wild-type antennae and tarsi. The projection pattern was identified by diffusion of cobalt into the cut peripheral nerves followed by Timm's silver intensification. No sensory fibers of the homoeotic tarsus extend into the thoracic leg centers; instead they project into normal antennal centers of the brain. In the posterior antennal center and the posterior part of the suboesophageal ganglion (SOG) they show precisely the same pattern as do those from the wild-type antenna. In other regions this is not the case: in the antennal glomeruli homoeotic terminals are randomly distributed, and in the anterior SOG fibers form a tract which is not present in antennal cobalt fills. We have not found any correspondence between thoracic and homoeotic tarsal projections. The projection of homoeotic tarsi in mosaic flies exhibiting an ssa antenna and a wild-type brain is similar to the “normal” homoeotic pattern. This suggests that the central nervous system (cns) is not transformed by the ssa gene. The behavior of normal and ectopic sensory fibers in the cns is explained in terms of both intrinsic properties of the sensory axons and extrinsic factors in the surrounding nervous tissue.  相似文献   

11.
35S-labeled proteins carried by fast axonal transport in sciatic sensory axons of bullfrog and rat were separated electrophoretically on discontinuous polyacrylamide gradient slab gels. In contrast to the previously reported similarity in the electrophoretic profiles of rapidly transported proteins from functionally different neurons, we have found that there is very little correspondence in the profiles of these proteins in functionally similar neurons from two widely studied species. We also found very little correspondence between the two species in the profiles of locally synthesized sciatic nerve protein. The results demonstrate the difficulty inherent in comparing the electrophoretic profiles obtained using these two model systems for the study of rapidly transported axonal proteins. In particular, relationships between the major rapidly transported proteins in the two species could_not be analyzed with this technique.  相似文献   

12.
Holo-high density lipoprotein (HDL) particle uptake, besides selective lipid uptake, constitutes an alternative pathway to regulate cellular cholesterol homeostasis. In the current study, the cellular path of holo-HDL particles was investigated in human liver carcinoma cells (HepG2) using combined light and electron microscopical methods. The apolipoprotein moiety of HDL was visualized with different markers: horseradish peroxidase, colloidal gold and the fluorochrome Alexa568, used in fluorescence microscopy and after photooxidation correlatively at the ultrastructural level. Time course experiments showed a rapid uptake of holo-HDL particles, an accumulation in endosomal compartments, with a plateau after 1–2 h of continuous uptake, and a clearance 1–2 h upon replacement by unlabeled HDL. Correlative microscopy, using HDL-Alexa568-driven diaminobenzidine (DAB) photooxidation, identified the fluorescent organelles as DAB-positive multivesicular bodies (MVBs) in the electron microscope; their luminal contents but not the internal vesicles were stained. Labeled MVBs increased in numbers and changed shapes along with the duration of uptake, from polymorphic organelles with multiple surface domains and differently shaped protrusions dominating at early times of uptake to compact bodies with mainly tubular appendices and densely packed vesicles after later times. Differently shaped and labeled surface domains and appendices, as revealed by three dimensional reconstructions, as well as images of homotypic fusions indicate the dynamics of the HDL-positive MVBs. Double staining visualized by confocal microscopy, along with the electron microscopic data, shows that holo-HDL particles after temporal storage in MVBs are only to a minor degree transported to lysosomes, which suggests that different mechanisms are involved in cellular HDL clearance, including resecretion.  相似文献   

13.
14.
The antennae of honeybee (Apis mellifera) workers and drones differ in various aspects. One striking difference is the presence of Sensilla basiconica in (female) workers and their absence in (male) drones. We investigate the axonal projection patterns of olfactory receptor neurons (ORNs) housed in S. basiconica in honeybee workers by using selective anterograde labeling with fluorescent tracers and confocal-microscopy analysis of axonal projections in antennal lobe glomeruli. Axons of S. basiconica-associated ORNs preferentially projected into a specific glomerular cluster in the antennal lobe, namely the sensory input-tract three (T3) cluster. T3-associated glomeruli had previously been shown to be innervated by uniglomerular projection (output) neurons of the medial antennal lobe tract (mALT). As the number of T3 glomeruli is reduced in drones, we wished to determine whether this was associated with the reduction of glomeruli innervated by medial-tract projection neurons. We retrogradely traced mALT projection neurons in drones and counted the innervated glomeruli. The number of mALT-associated glomeruli was strongly reduced in drones compared with workers. The preferential projections of S. basiconica-associated ORNs in T3 glomeruli together with the reduction of mALT-associated glomeruli support the presence of a female (worker)-specific olfactory subsystem that is partly innervated by ORNs from S. basiconica and is associated with the T3 cluster of glomeruli and mALT projection neurons. We propose that this olfactory subsystem supports parallel olfactory processing related to worker-specific olfactory tasks such as the coding of colony odors, colony pheromones and/or odorants associated with foraging on floral resources.  相似文献   

15.
In this study we describe a population of neurons in the adult rat trigeminal ganglion (TG) that express dopamine beta-hydroxylase (DBH) and tyrosine hydroxylase (TH), and transport anti-DBH from their terminals. We have used NGF and NT3 labeled with biotin and anti-p75NTR labeled with FITC to examine the transport of neurotrophins and their receptors by these cells. In both the superior cervical ganglion (SCG) and the TG all neurons that transported anti-DBH transported NGF. While 100% of the DBH positive neurons in the TG also transported NT3, approximately 25% of these neurons in the SCG failed to transport NT3. In the SCG virtually all the neurons transported anti-p75NTR with the neurotrophins while in the TG more than 25% of these neurons failed to transport anti-p75NTR with the neurotrophins. These findings suggest that DBH positive neurons in the TG depend upon target-derived NGF and NT3 for their noradrenergic phenotype.  相似文献   

16.
The novel fatty acid trans-9-methyl-10-octadecenoic acid was isolated from the coryneform bacterial strain LMG 3820 (previously misidentified as Arthrobacter globiformis) and identified by spectroscopic methods and chemical derivatization. This fatty acid is attached to the unusual lipid acyl phosphatidylglycerol. Five different species of this lipid type were identified; their structures were elucidated by tandem mass spectrometry and are reported here for the first time. Additionally, we identified three different cardiolipins, two bearing the novel fatty acid. The characteristic 10-methyl-octadecanoic acid was present only in phosphatidylinositol. Because of the unusual fatty acid pattern of strain LMG 3820, the 16S rDNA sequence was determined and showed regions of identity to sequences of Corynebacterium variabilis DSM 20132T and DSM 20536. All three strains possessed the novel fatty acid, identifying trans-9-methyl-10-octadecenoic acid as a potential biomarker characteristic for this taxon. Surprisingly, the fatty acid and relative abundances of phospholipids of Corynebacterium sp. strain LMG 3820 were similar to those of the type strain but different from those of Corynebacterium variabilis DSM 20536, although all three strains possessed identical 16S rDNA sequences and strains DSM 20132T and DSM 20536 have 90.5% DNA-DNA homology. This is one of the rare cases wherein different organisms with identical 16S rDNA sequences have been observed to present recognizably different fatty acid and lipid compositions. Since methylation of a fatty acid considerably lowers the transition temperature of the corresponding lipid resulting in a more flexible cell membrane, the intraspecific variation in the lipid composition, coinciding with the morphological and Gram stain reaction variability of this species, probably offers an advantage for this species to inhabit different environmental niches.  相似文献   

17.
C. elegans will orient and travel in a straight uninterrupted path directly towards the negative pole of a DC electric field. We have sought to understand the strategy worms use to navigate to the negative pole in a uniform electric field that is fixed in both direction and magnitude. We examined this behavior by quantifying three aspects of electrotaxis behavior in response to different applied field strengths: the mean approach trajectory angles of the animals’ tracks, turning behavior (pirouettes) and average population speeds. We determined that C. elegans align directly to the negative pole of an electric field at sub-preferred field strength and alter approach trajectories at higher field strengths to maintain taxis within a preferred range we have calculated to be ~ 5V/cm. We sought to identify the sensory neurons responsible for the animals’ tracking to a preferred field strength. eat-4 mutant animals defective in glutamatergic signaling of the amphid sensory neurons are severely electrotaxis defective and ceh-36 mutant animals, which are defective in the terminal differentiation of two types of sensory neurons, AWC and ASE, are partially defective in electrotaxis. To further elucidate the role of the AWC neurons, we examined the role of each of the pair of AWC neurons (AWCOFF and AWCON), which are functionally asymmetric and express different genes. nsy-5/inx-19 mutant animals, which express both neurons as AWCOFF, are severely impaired in electrotaxis behavior while nsy-1 mutants, which express both neurons as AWCON, are able to differentiate field strengths required for navigation to a specific field strength within an electric field. We also tested a strain with targeted genetic ablation of AWC neurons and found that these animals showed only slight disruption of directionality and turning behavior. These results suggest a role for AWC neurons in which complete loss of function is less disruptive than loss of functional asymmetry in electrotaxis behavior within a uniform fixed field.  相似文献   

18.
Identified thoracic sensory neurons were backfilled with peroxidase in wild-type Drosophila and in the mutants wingless, Contrabithorax, scute, bithorax postbithorax, and Hairy-wing, and their projection in the central nervous system was analyzed. The sensory neurons which have been studied can be divided into four classes as they project along one of four general pathways. All the neurons which underly a given type of sensory structure in a given developmental compartment follow specifically one of these pathways. However, within at least two of the four classes, the details of the projection can vary according to the particular region of the epidermis from which the neuron derives, and according to the position along the anteroposterior axis. It is proposed that the choice of a general pathway depends on the developmental history of the neuron, while the detail of each projection depends on its position.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号