首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The effects of xanthine + xanthine oxidase-generated reactive oxygen species (ROS) on rabbit muscle creatine kinase (CK) were studied. Xanthine (0.1 mM) + xanthine oxidase (30 mU/ml) inhibited activity of rabbit muscle CK (1.2mU/ml). Catalase (100/ml), but not SOD (100 U/ml), deferoxamine (100μM) or mannitol (20 mM), protected CK from inactivation; suggesting that H2O2 was responsible for inactivation. These results were different from previously reported findings on bovine heart CK that superoxide radicals inactivate the enzyme. Thus, enzymes with homologous structures may have different reactivities to different ROS. H2O2-induced inactivation of rabbit muscle CK was accompanied by a decrease in its thiol group content, whereas no significant changes in the protein structure were detected by SDS-PAGE or carbonyl content. These results suggest that oxidation of -SH groups by H2O2 seems to be a major mechanism of activation of rabbit muscle CK by xanthine + xanthine oxidase. Such inactivation of CK by H2O2 may be important in ROS-induced pathology.  相似文献   

2.
The turning point between apoptosis and necrosis induced by hydrogen peroxide (H2O2) have been investigated using human T-lymphoma Jurkat cells. Cells treated with 50 μM H2O2 exhibited caspase-9 and caspase-3 activation, finally leading to apoptotic cell death. Treatment with 500 μM H2O2 did not exhibit caspase activation and changed the mode of death to necrosis. On the other hand, the release of cytochrome c from the mitochondria was observed under both conditions. Treatment with 500 μM H2O2, but not with 50 μM H2O2, caused a marked decrease in the intracellular ATP level; this is essential for apoptosome formation. H2O2-reducing enzymes such as cellular glutathione peroxidase (cGPx) and catalase, which are important for the activation of caspases, were active under the 500 μM H2O2 condition. Prevention of intracellular ATP loss, which did not influence cytochrome c release, significantly activated caspases, changing the mode of cell death from necrosis to apoptosis. These results suggest that ATP-dependent apoptosome formation determines whether H2O2-induced cell death is due to apoptosis or necrosis.  相似文献   

3.
Tea (Camellia sinensis) catechins have been studied for disease prevention. These compounds undergo oxidation and produce H2O2. We have previously shown that holding tea solution or chewing tea leaves generates high salivary catechin levels. Herein, we examined the generation of H2O2 in the oral cavity by green tea solution or leaves. Human volunteers holding green tea solution (0.1-0.6%) developed salivary H2O2 with Cmax = 2.9-9.6 μM and AUC0 → ∞ = 8.5-285.3 μM min. Chewing 2 g green tea leaves produced higher levels of H2O2 (Cmax = 31.2 μM, AUC0 → ∞ = 1290.9 μM min). Salivary H2O2 correlated with catechin levels and with predicted levels of H2O2 (Cmax(expected) = 36 μM vs Cmax(determined) = 31.2 μM). Salivary H2O2 and catechin concentrations were similar to those that are biologically active in vitro. Catechin-generated H2O2 may, therefore, have a role in disease prevention by green tea.  相似文献   

4.
Hydrogen peroxide (H2O2) is known to both induce and inhibit apoptosis, however the mechanisms are unclear. We found that H2O2 inhibited the activity of recombinant caspase-3 and caspase-8, half-inhibition occurring at about 17 μM H2O2. This inhibition was both prevented and reversed by dithiothreitol while glutathione had little protective effect. 100–200 μM H2O2 added to macrophages after induction of caspase activation by nitric oxide or serum withdrawal substantially inhibited caspase activity. Activation of H2O2-producing NADPH oxidase in macrophages also caused catalase-sensitive inactivation of cellular caspases. The data suggest that the activity of caspases in cells can be directly but reversibly inhibited by H2O2.  相似文献   

5.
Methylmercury (MeHg) is a neurotoxic agent acting via diverse mechanisms, including oxidative stress. MeHg also induces astrocytic dysfunction, which can contribute to neuronal damage. The cellular effects of MeHg were investigated in human astrocytoma D384 cells, with special reference to the induction of oxidative-stress-related events. Lysosomal rupture was detected after short MeHg-exposure (1 μM, 1 h) in cells maintaining plasma membrane integrity. Disruption of lysosomes was also observed after hydrogen peroxide (H2O2) exposure (100 μM, 1 h), supporting the hypothesis that lysosomal membranes represent a possible target of agents causing oxidative stress. The lysosomal alterations induced by MeHg and H2O2 preceded a decrease of the mitochondrial potential. At later time points, both toxic agents caused the appearance of cells with apoptotic morphology, chromatin condensation, and regular DNA fragmentation. However, MeHg and H2O2 stimulated divergent pathways, with caspases being activated only by H2O2. The caspase inhibitor z-VAD-fmk did not prevent DNA fragmentation induced by H2O2, suggesting that the formation of high-molecular-weight DNA fragments was caspase independent with both MeHg and H2O2. The data point to the possibility that lysosomal hydrolytic enzymes act as executor factors in D384 cell death induced by oxidative stress.  相似文献   

6.
The purpose of this study was to quantify the effects of extracellularly generated partially reduced oxygen species on active sodium (NA+) transport across the ventral toad skin, a well-studied epithelium. Sections of skin from decapitated toads were mounted in an Ussing chamber, bathed on both sides with electrolyte solution containing 500 μM xanthine and bubbled continuously with room air. The tissues were short-circuited, and short circuit current (Isc) and tissue resistance (Rt were monitored continuously with an automatic voltage clamp apparatus. Fifteen mU/ml of xanthine oxidase (XO), either purchased from Calbiochem or purified from cream, were instilled in either the apical (mucosal) or basolateral (serosal) baths at t = 0 and T = 10 min. Hydrogen peroxide (H2O2) concentrations increased to 200 μM within the first 20 min and then decreased, reaching a value of 40 μM by 60 min. Mean [H2O2] was 90 μM. Instillation of XO in the apical bath resulted in a large decrease in Isc and an increase in Rt, their values being 43% and 160% of their corresponding controls 85 min after the first instillation. Addition of superoxide dismutase and catalase completely prevented these changes. Instillation of XO in the basolateral bath had no effect. Similar physiological responses were obtained using the Calbiochem XO or the purified XO, which contained no measurable protease activity. It was concluded that extracellularly generated partially reduced oxygen species may interfere with active Na+ transport by possibly damaging apical Na+ channel proteins.  相似文献   

7.
Thyroglobulin (Tg) was subjected to metal-catalyzed oxidation, and the oxidative degradation was analyzed by SDS-polyacrylamide gel electrophoresis under reducing conditions. In contrast to no effect of hydrogen peroxide (H2O2) alone on the Tg degradation, the inclusion of Cu2+ (30 μM), in combination with 2 mM H2O2, caused a remarkable degradation of Tg, time- and concentration-dependent. The action of Cu2+ was not mimicked by Fe2+, suggesting that Tg may interact selectively with Cu2+. A similar degradation of Tg was also observed with Cu2+corbate system, and the concentration of Cu2+ (5-10 μM), in combination with ascorbate, required for the effective degradation was smaller than that of Cu2+ (10-30 μM) in combination with H2O2. In support of involvement of H2O2 in the Cu2+ corbate action, catalase expressed a complete protection. However, hydroxyl radical scavengers such as dimethylsulfoxide or mannitol failed to prevent the oxidation of Tg whereas phenolic compounds, which can interact with Cu2+, diminished the oxidative degradation, presumably consistent with the mechanism for Cu2+-catalyzed oxidation of protein. Moreover, the amount of carbonyl groups in Tg was increased as the concentration (3-100 μM) of Cu2+ was enhanced, while the formation of acid-soluble peptides was not remarkable in the presence of Cu2+ up to 200 μM. In further studies, Tg pretreated with heat or trichloroacetic acid seemed to be somewhat resistant to Cu2+-catalyzed oxidation, implying a possible involvement of protein conformation in the susceptibility to the oxidation. Based on these observations, it is proposed that Tg could be degraded non-enzymatically by Cu2+-catalyzed oxidation.  相似文献   

8.
Oxidant-sensitive protein phosphorylation in endothelial cells   总被引:1,自引:0,他引:1  
Reactive oxygen is an important regulator of vascular cell biology; however, the mechanisms involved in transducing signals from oxidants in endothelial cells are poorly defined. Because protein phosphorylation is a major mechanism for signal ransduction, cultured aortic endothelial cells were exposed to nonlethal concentrations of H2O2 to examine oxidant-sensitive changes in phosphorylation state. Addition of H2O2 increases the phosphorylation of the heat shock protein 27 (HSP27) within 2 min. This response is maximal by 20 min and remains constant for more than 45 min. Levels of intrcellular free Ca2+ in endothelial cells did not change following addition of 100 μM H2O2, nor did the ability of the cells to respond to bradykinin. H2O2-induced phosphorylations were either not affected or were slightly increased in cells pretreated with PKC inhibitors (H-8, staurosporin, or calphostin c). Two-dimensional analysis of phosphoproteins from homogenates of 32P-labeled cells revealed that phorbol myristate acetate (PMA) did not cause the same degree of HSP27 phosphorylation as H2O2. Simultaneous addition of 10 ηM PMA and 50 μM H2O2 decreased the oxidant-stimulated phoshorylation of the most acidic HSP27 isoform. These data suggest that signal transduction for H2O2-sensitive endothelial cell responses are not only independent of PKC, but may also be suppressed by the action of the kinase.  相似文献   

9.
Heme catalases are considered to degrade two molecules of H2O2 to two molecules of H2O and one molecule of O2 employing the catalatic cycle. We here studied the catalytic behaviour of bovine liver catalase at low fluxes of H2O2 (relative to catalase concentration), adjusted by H2O2-generating systems. At a ratio of a H2O2 flux (given in μM/min- 1) to catalase concentration (given in μM) of 10 min- 1 and above, H2O2 degradation occurred via the catalatic cycle. At lower ratios, however, H2O2 degradation proceeded with increasingly diminished production of O2. At a ratio of 1 min- 1, O2 formation could no longer be observed, although the enzyme still degraded H2O2. These results strongly suggest that at low physiological H2O2 fluxes H2O2 is preferentially metabolised reductively to H2O, without release of O2. The pathways involved in the reductive metabolism of H2O2 are presumably those previously reported as inactivation and reactivation pathways. They start from compound I and are operative at low and high H2O2 fluxes but kinetically outcompete the reaction of compound I with H2O2 at low H2O2 production rates. In the absence of NADPH, the reducing equivalents for the reductive metabolism of H2O2 are most likely provided by the protein moiety of the enzyme. In the presence of NADPH, they are at least in part provided by the coenzyme.  相似文献   

10.
Cho ES  Lee KW  Lee HJ 《Mutation research》2008,640(1-2):123-130
Oxidative stress induced by reactive oxygen species has been strongly associated with the pathogenesis of neurodegenerative disorders, including Alzheimer's disease. In this study, we investigated the possible protective effects of a cocoa procyanidin fraction (CPF) and procyanidin B2 (epicatechin-(4β-8)-epicatechin) – a major polyphenol in cocoa – against apoptosis of PC12 rat pheochromocytoma (PC12) cells induced by hydrogen peroxide (H2O2). CPF (1 and 5 μg/ml) and procyanidin B2 (1 and 5 μM) reduced PC12 cell death caused by H2O2, as determined by MTT and trypan blue exclusion assays. CPF and procyanidin B2 attenuated the H2O2-induced fragmentation of nucleus and DNA in PC12 cells. Western blot data demonstrated that H2O2 induced cleavage of poly(ADP-ribose)polymerase (PARP), downregulated Bcl-XL and Bcl-2 in PC12 cells. Pretreatment with CPF or procyanidin B2 before H2O2 treatment diminished PARP cleavage and increased Bcl-XL and Bcl-2 expression compared with those only treated with H2O2. Activation of caspase-3 by H2O2 was inhibited by pretreatment with CPF or procyanidin B2. Furthermore, H2O2-induced rapid and significant phosphorylation of c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), and both of these effects were attenuated by CPF or procyanidin B2 treatment. These results suggest that the protective effects of CPF and procyanidin B2 against H2O2-induced apoptosis involve inhibiting the downregulation of Bcl-XL and Bcl-2 expression through blocking the activation of JNK and p38 MAPK.  相似文献   

11.
The effect of vitamin C (ascorbate) on oxidative DNA damage was examined by first incubating cells with dehydroascorbate, which boosts the intracellular concentration of ascorbate, and then exposing cells to H2O2. Oxidative DNA damage was estimated by the analysis of 5-hydroxy-2′-deoxycytidine (oh5dCyd) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (oxo8dGuo). The presence of a high concentration of ascorbate (30 mM), compared to the absence of ascorbate in cells, when exposed to H2O2 (200 μM), resulted in a remarkable sensitization of oh5dCyd from 2.7 ± 0.6 to 40.8 ± 6.1 lesions /106 dCyd (15-fold). In contrast, the level of oxo8dGuo increased from 8.4 ± 0.4 to 12.1 ± 0.5 lesions/106 dGuo (50%). The formation of oh5dCyd was also observed at lower concentrations of intracellular ascorbate and exogenous H2O2. Additional studies showed that replacement of H2O2 with tert-butyl hydroperoxide completely abolished damage, and that preincubation with iron and desferroxamine increased and decreased this damage, respectively. The latter studies suggest that a Fenton reaction is involved in the mechanism of damage. In conclusion, we report a novel model system in which ascorbate sensitizes H2O2-induced oxidative DNA damage in cells, leading to elevated levels of oh5dCyd and oxo8dGuo, with a strong bias toward the formation of oh5dCyd.  相似文献   

12.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

13.
Ascorbic acid (vitamin C) induced hydrogen peroxide (H2O2) formation was measured in household drinking water and metal supplemented Milli-Q water by using the FOX assay. Here we show that ascorbic acid readily induces H2O2 formation in Cu(II) supplemented Milli-Q water and poorly buffered household drinking water. In contrast to Cu(II), iron was not capable to support ascorbic acid induced H2O2 formation during acidic conditions (pH: 3.5-5). In 12 out of the 48 drinking water samples incubated with 2 mM ascorbic acid, the H2O2 concentration exceeded 400 μM. However, when trace amounts of Fe(III) (0.2 mg/l) was present during incubation, the ascorbic acid/Cu(II)-induced H2O2 accumulation was totally blocked. Of the other common divalent or trivalent metal ions tested, that are normally present in drinking water (calcium, magnesium, zinc, cobalt, manganese or aluminum), only calcium and magnesium displayed a modest inhibitory activity on the ascorbic acid/Cu(II)-induced H2O2 formation. Oxalic acid, one of the degradation products from ascorbic acid, was confirmed to actively participate in the iron induced degradation of H2O2. Ascorbic acid/Cu(II)-induced H2O2 formation during acidic conditions, as demonstrated here in poorly buffered drinking water, could be of importance in host defense against bacterial infections. In addition, our findings might explain the mechanism for the protective effect of iron against vitamin C induced cell toxicity.  相似文献   

14.
The ability of several beverages to generate hydrogen peroxide was demonstrated by direct measurement using the ferrous ion oxidation-xylenol orange (FOX) assay. Tea and coffee could generate H2O2 to achieve levels over 100 μM, but cocoa did not. Milk decreased net H2O2 production by beverages and showed some ability to remove H2O2 itself, apparently not because of catalase activity. Hence several of the beverages commonly drunk by humans show a complex mixture of anti- and pro-oxidant abilities.  相似文献   

15.
Oxidative stress-induced apoptosis prevented by trolox   总被引:45,自引:0,他引:45  
The ability of oxidative stress to induce apoptosis (programmed cell death), and the effect of Trolox, a water soluble vitamin E analog, on this induction were studied in vitro in mouse thymocytes. Cells were exposed to oxidative stress by treating them with 0.5–10 μM hydrogen peroxide (H2O2) for 10 min, in phosphate-buffered saline supplemented with 0.1 mM ferrous sulfate. Cells were resuspended in RPMI 1640 medium with 10% serum and incubated at 37°C under 5% CO2 in air. Electron microscopic studies revealed morphological changes characteritic of apoptosis in H2O2-treated fragmented the DNA in a manner typical of apoptotic cells, producing a ladder pattern of 200 base pair increments upon agarose gel electrophoresis. The percentage of DNA fragmentation (determined fluorometrically) increased with increasing doses of H2O2 and postexposure incubation times. Pre- or posttreatment of cells with Trolox reduced H2O2-induced DNA fragmentation to control levels and below. The results indicate that oxidative stress induces apoptosis in thymocytes, and this induction can be prevented by Trolox, a powerful inhibitor of membrane damage.  相似文献   

16.
Introduction Excess of intracellular reactive oxygen species in relation to antioxidative systems results in an oxidative environment which may modulate gene expression or damage cellular molecules. These events are expected to greatly contribute to processes of carcinogenesis. Only few studies are available on the oxidative/reductive conditions in the colon, an important tumour target tissue. It was the objective of this work to further develop methods to assess intracellular oxidative stress within human colon cells as a tool to study such associations in nutritional toxicology.

Methods We have measured H2O2-induced oxidative stress in different colon cell lines, in freshly isolated human colon crypts, and, for comparative purposes, in NIH3T3 mouse embryo fibroblasts. Detection was performed by loading the cells with the fluorigenic peroxide-sensitive dye 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (diacetoxymethyl ester), followed by in vitro treatment with H2O2 and fluorescence detection with confocal laser scanning microscopy (CLSM). Using the microgel electrophoresis (“Comet”) Assay, we also examined HT29 stem and clone 19A cells and freshly isolated primary colon cells for their relative sensitivity toward H2O2-induced DNA damage and for steady-state levels of endogenous oxidative DNA damage.

Results A dose-response relationship was found for the H2O2-induced dye decomposition in NIH3T3 cells (7.8-125 μM H2O2) whereas no effect occurred in the human colon tumour cell lines HT29 stem and HT29 clone 19A (62-1000 μM H2O2). Fluorescence was significantly increased at 62 μM H2O2 in the human colon adenocarcinoma cell line Caco-2. In isolated human colon crypts, the lower crypt cells (targets of colon cancer) were more sensitive towards H2O2 than the more differentiated upper crypt cells. In contrast to the CLSM results, oxidative DNA damage was detected in both cell lines using the Comet Assay. Endogenous oxidative DNA damage was highest in HT29 clone 19A, followed by the primary colon cells and HT29 stem cells.

Conclusions Oxidative stress in colon cells leads to damage of macromolecules which is sensitively detected in the Comet Assay. The lacking response of the CLSM-approach in colon tumour cells is probably due to intrinsic modes of protective activities of these cells. In general, however, the CLSM method is a sensitive technique to detect very low concentrations of H2O2-induced oxidative stress in NIH3T3 cells. Moreover, by using colon crypts it provides the unique possibility of assessing cell specific levels of oxidative stress in explanted human tissues. Our results demonstrate that the actual target cells of colon cancer induction are indeed susceptible to the oxidative activity of H2O2.  相似文献   

17.
The effect of oxygen transfer rate (OTR) on β-carotene production by Blakelsea trispora in shake flask culture was investigated. The results indicated that the concentration of β-carotene (704.1 mg/l) was the highest in culture grown at maximum OTR of 20.5 mmol/(l h). In this case, the percentage of zygospores was over 50.0% of the biomass dry weight. On the other hand, OTR level higher than 20.5 mmol/(l h) was found to be detrimental to cell growth and pigment formation. To elucidate the effect of oxidative stress on β-carotene synthesis, the accumulation of hydrogen peroxide during fermentation under different OTRs was determined. A linear response of β-carotene synthesis to the level of H2O2 was observed, indicating that β-carotene synthesis is stimulated by H2O2. However, there was an optimal concentration of H2O2 (2400 μM) in enhancing β-carotene synthesis. At a higher concentration of H2O2, β-carotene decreased significantly due to its toxicity.  相似文献   

18.
Mapping oxidative DNA damage at nucleotide level   总被引:5,自引:0,他引:5  
DNA damage induced by reactive oxygen species (ROS) is considered an important intermediate in the pathogenesis of human conditions such as cancer and aging. By developing an oxidative-induced DNA damage mapping version of the Ligation-mediated polymerase chain reaction (LMPCR) technique, we investigated the in vivo and in vitro frequencies of DNA base modifications caused by ROS in the human p53 and PGK1 gene. Intact human male fibroblasts were exposed to 50 mM H2O2, or purified genomic DNA was treated with 5 mM H2O2, 100 μM Ascorbate, and 50 μM, 100 μM, or 100 μM of Cu(II), Fe(III), or Cr(VI) respectively. The damage pattern generated in vivo was nearly identical to the in vitro Cu(II) or Fe(III) damage patterns; damage was non-random with guanine bases heavily damaged. Cr(VI) generated an in vitro damage pattern similar to the other metal ions, although several unique thymine positions were damaged. Also, extra nuclear sites are a major contributor of metal ions (or metal-like ligands). These data show that the local probability of H2O2-mediated DNA damage is determined by the primary DNA sequence, with chromatin structure having a limited effect. The data suggest a model in which DNA-metal ion binding domains can accommodate different metalions. LMPCR's unique aspect is a blunt-end ligation of an asymmetric double-stranded linker, permitting exponential PCR amplification. An important factor limiting the sensitivity of LMPCR is the representation of target gene DNA relative to non-targeted genes; therefore, we recently developed a method to eliminate excess non-targeted genomic DNA. Restriction enzyme-digested genomic DNA is size fractionated by Continuous Elution Electrophoresis (CEE), capturing the target sequence of interest. The amount of target DNA in the starting material for LMPCR is enriched, resulting in a stronger amplification signal. CEE provided a 24-fold increase in the signal strength attributable to strand breaks plus modified bases created by ROS in the human p53 and PGK1 genes, detected by LMPCR. We are currently taking advantage of the enhanced sensitivity of target gene-enriched LMPCR to map DNA damage induced in human breast epithelial cells exposed to non-cytotoxic concentrations of H2O2.  相似文献   

19.
Wu LT  Chu CC  Chung JG  Chen CH  Hsu LS  Liu JK  Chen SC 《Mutation research》2004,556(1-2):75-82
The effect of tannic acid (TA), gallic acid (GA), propyl gallate (PA) and ellagic acid (EA) on DNA damage in human lymphocytes induced by food mutagens [3-amino-1-methyl-5H-pyrido (4,3-b) indole (Trp-P-2) and 2-amino-1-methyl-6-phenylimadazo (4,5-b) pyridine (PhIP) or H2O2 was evaluated by using single-cell electrophoresis (comet assay). The toxicity of these tested compounds (0.1–100 μg/ml) on lymphocytes was not found. These compounds did not cause DNA strand breaks at lower concentrations of 0.1–10 μg/ml. At a concentration of 100 μg/ml, TA and GA exhibited slight DNA damage, whereas PA and EA showed no DNA strand breaks. TA and its related compounds decreased the DNA strand breaks induced by Trp-P-2, PhIP or H2O2 at concentrations of 0.1–10 μg/ml. DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycoslase (FPG)] were used to examine the levels of oxidised pyrimidines and purines in human lymphocytes induced by H2O2. All the compounds at 10 μg/ml can reduce the level of FPG sensitive sites. However, only EA inhibited the formation of EndoIII sensitive sites. The results indicated that these compounds can enhance lymphocytes resistance towards DNA strand breaks induced by food mutagens or H2O2 in vitro.  相似文献   

20.
The reaction of H2O2 with resting metmyoglobin (MetMb), methaemoglobin (MetHb) and cytochrome-c (Cyt-c) was studied in the Soret and visible regions. The differences between the original and the final peak heights of the native haemproteins at 408 nm was found to be directly proportional to the loss of iron from the molecule. The release of iron from haemproteins was studied in a system generating H2O2 continuously at a low rate by an enzymic system, or by addition of large amounts of H2O2. Cytochrome-c, methaemoglobin and metmyoglobin during interaction with H2O2 at a concentration of 200 μM release 40%, 20% and 3%, respectively, of molecular iron after l0min. The inhibition of haem degradation and iron release by enzymatically-generated H2O2 was determined using several hydroxyl radical scavengers, reducing agents and antioxienzymes, such as superoxide dismutase, catalase and caeruloplasmin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号