共查询到20条相似文献,搜索用时 0 毫秒
1.
Katsutoshi Takada Naohito Ohno Toshiro Yadomae 《FEMS immunology and medical microbiology》1994,9(4):255-263
Abstract Recent studies carried out by our group suggest that lysozyme binds to bacterial lipopolysaccharide with a high affinity to produce a complex, and inhibits various biological activities of lipopolysaccharide. Although the basic structure of lipopolysaccharide is independent of the species and strains of Gram-negative bacteria, many structural factors such as O-antigenic polysaccharide, lipid A, substituted groups, and associated molecules, affect the biological activities of lipopolysaccharide. In this study, we prepared lysozyme/lipopolysaccharide complexes using various structures of lipopolysaccharide and compared the activity and physiochemical properties. Native and dansylated lysozyme were found to bind to all tested lipopolysaccharides. The mitogenic activity and TNF production by all tested lipopolysaccharides were significantly reduced by complex formation in vitro. Administration of the complex prepared by various lipopolysaccharides produced significantly less quantities of TNF in the septic shock model. These results suggested that binding of lysozyme to lipopolysaccharide is important for the host both in pathophysiological responses to lipopolysaccharides and in the modification of lipopolysaccharide biological activity. 相似文献
2.
Yamazoe M Nishitani C Takahashi M Katoh T Ariki S Shimizu T Mitsuzawa H Sawada K Voelker DR Takahashi H Kuroki Y 《The Journal of biological chemistry》2008,283(51):35878-35888
Pulmonary surfactant protein D (SP-D) is a member of the collectin family that plays an important role in regulating innate immunity of the lung. We examined the mechanisms by which SP-D modulates lipopolysaccharide (LPS)-elicited inflammatory cell responses. SP-D bound to a complex of recombinant soluble forms of Toll-like receptor 4 (TLR4) and MD-2 with high affinity and down-regulated tumor necrosis factor-alpha secretion and NF-kappaB activation elicited by rough and smooth LPS, in alveolar macrophages and TLR4/MD-2-transfected HEK293 cells. Cell surface binding of both serotypes of LPS to TLR4/MD-2-expressing cells was attenuated by SP-D. In addition, SP-D significantly reduced MD-2 binding to both serotypes of LPS. A chimera containing the N-terminal region and the collagenous domain of surfactant protein A, and the coiled-coil neck and lectin domains of SP-D, was a weak inhibitor of LPS-induced cell responses and MD-2 binding to LPS, compared with native SP-D. The collagenase-resistant fragment consisting of the neck plus the carbohydrate recognition domain of SP-D also was a very weak inhibitor of LPS activation. This study demonstrates that SP-D down-regulates LPS-elicited inflammatory responses by altering LPS binding to its receptors and reveals the importance of the correct oligomeric structure of the protein in this process. 相似文献
3.
4.
To analyze transduction mechanisms in human lymphocyte killing, intracellular Ca2+ levels were increased by ionophore A23187 treatment and protein kinase C activated by phorbol ester 12-O-tetradecanoylphorbol-acetate (TPA). Drugs were tested either alone or in combinations on effector cells active in natural, antibody-dependent, and lectin-dependent killing. TPA suppressed killing in all systems at 100 ng/ml whereas A23187 was only suppressive for NK killing at concentrations higher than 0.1 microM. TPA combined with A23187, above 10 ng/ml and 0.5 microM, respectively, induced killing of all tested target cell lines with a slower kinetic than NK killing of K562 cells. Drug-induced killing did not increase optimal lectin and antibody-dependent killing and was demonstrated most easily on NK-resistant target cell lines. Fractionation of effector lymphocytes into NK cell-depleted, T3-positive and NK cell-enriched, T3-negative cells demonstrated that similar levels of TPA/A23187-dependent killing could be induced in both fractions. It is concluded that TPA/A23187 induce normal lymphocytes to nonselective killing of different target cells in similarity to the triggering effect these drugs have in many other cell systems. Whether the induced killing is representative of NK killing is discussed in relation to the presence of other potential effector cells and effector molecules in peripheral blood lymphocytes. 相似文献
5.
Atsushi Uchida 《Biotherapy》1994,8(2):113-122
The activity of blood lymphocytes to kill autologous freshly isolated tumor cells tested at the time of surgery predicts a favorable clinical course in patients who have primary localized solid tumor and receive curative operation. The strong correlation of autologous tumor killing (ATK) activity with disease-free interval and total survival indicates that ATK activity is a meaningful prognostic indicator and provides evidence for immunological control of tumor growth and metastasis. Although there is no direct evidence that ATK lymphocytes play a critical role in regression of tumor and prevention of tumor regrowth, the lack of ATK activity in patients who relapsed and died may not result from other factors related to their poor performance status, immune functions and tumor characteristics. Clinical trials with ATK induction therapy resulted in an improvement of the clinical outcome in patients who naturally have no such potential. The data indicate that the presence of both natural and induced ATK activity is strongly associated with long-term survival. In addition, adoptive transfer of BRM-induced ATK effector cells resulted in prolongation of survival time even in patients with documented metastatic tumors. Thus, considerable emphasis should be placed on a strategy that induces ATK activityin vivo. Such an approach may provide a new focus for cancer immunotherapy.Abbreviations ATK
Autologous tumor killing
- BRM
biological response modifiers
- AIDS
acquired immune deficiency syndrome
- NK
natural killer
- LGL
large granular lymphocytes
- TIL
tumor-infiltrating lymphocytes
- MHC
major histocompatibility complex
- TCR
T cell antigen receptor
- LAK
lymphokine-activated killer
- IL
Interleukin
- IFN
interferon
- TNF
tumor necrosis factor
- ATKF
autologous tumor killing factor
- LFA-1
leukocyte function-associated antigen 1
- ICAM-1
intercellular adhesion molecule 1
- mAb
monoclonal antibodies 相似文献
6.
Neurons reduce glial responses to lipopolysaccharide (LPS) and prevent injury of microglial cells from over-activation by LPS 总被引:2,自引:0,他引:2
The microenvironment of the CNS has been considered to tonically inhibit glial activities. It has been shown that glia become activated where neuronal death occurs in the aging brain. We have previously demonstrated that neurons tonically inhibit glial activities including their responses to the bacterial endotoxin lipopolysaccharide (LPS). It is not clear whether activation of glia, especially microglia in the aging brain, is the consequence of disinhibition due to neuronal death. This study was designed to determine if glia regain their responsiveness to LPS once the neurons have died in aged cultures. When cultured alone, glia from postnatal day one rat mesencephalons stimulated with LPS (0.1-1000 ng/mL) produced both nitric oxide (NO) and tumor necrosis factor alpha (TNFalpha), yielding a sigmoid and a bell-shaped curve, respectively. When neuron-containing cultures were prepared from embryonic day 14/15 mesencephalons, the shape of the dose-response curve for NO was monotonic and the bell-shaped curve for TNFalpha production was shifted to the right. After 1 month of culture under conditions where neurons die, the production curves for NO and TNFalpha in LPS-stimulated glia shifted back to the left compared to mixed neuron-glia cultures. Immunostaining of rat microglia for the marker CR3 (the receptor for complement component C3) demonstrated that high concentrations of LPS (1 microg/mL) reduced the number of microglia in mixed-glial cultures. In contrast, reduction of CR3 immunostaining was not observed in LPS-stimulated mixed neuron-glia cultures. Taken together, the results demonstrate that disinhibition of the glial response to LPS occurs after neurons die in aged cultures. Once neurons have died, the responsiveness of glia to LPS is restored. Neurons prevented injury to microglia by reducing their responsiveness to LPS. This study broadens our understanding of the ways in which the CNS microenvironment affects cerebral inflammation. 相似文献
7.
Olivares-Zavaleta N Carmody A Messer R Whitmire WM Caldwell HD 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(12):7120-7126
Chlamydia pneumoniae is an omnipresent obligate intracellular bacterial pathogen that infects numerous host species. C. pneumoniae infections of humans are a common cause of community acquired pneumonia but have also been linked to chronic diseases such as atherosclerosis, Alzheimer's disease, and asthma. Persistent infection and immune avoidance are believed to play important roles in the pathophysiology of C. pneumoniae disease. We found that C. pneumoniae organisms inhibited activated but not nonactivated human T cell proliferation. Inhibition of proliferation was pathogen specific, heat sensitive, and multiplicity of infection dependent and required chlamydial entry but not de novo protein synthesis. Activated CD4(+) and CD8(+) T cells were equally sensitive to C. pneumoniae antiproliferative effectors. The C. pneumoniae antiproliferative effect was linked to T cell death associated with caspase 1, 8, 9, and IL-1β production, indicating that both apoptotic and pyroptotic cellular death pathways were activated after pathogen-T cell interactions. Collectively, these findings are consistent with the conclusion that C. pneumoniae could induce a local T cell immunosuppression and inflammatory response revealing a possible host-pathogen scenario that would support both persistence and inflammation. 相似文献
8.
Lymphokine regulation of activated (G1) lymphocytes. II. Glucocorticoid and anti-Tac-induced inhibition of human T lymphocyte proliferation 总被引:5,自引:0,他引:5
F Bettens F Kristensen C Walker U Schwuléra G D Bonnard A L de Weck 《Journal of immunology (Baltimore, Md. : 1950)》1984,132(1):261-265
The regulation of the first cell cycle of human, activated (G1) PBL was analyzed by flow cytometry and [3H]thymidine incorporation. Endogenous IL 2 production was blocked in situ by pharmacologic concentration of DEX (100 to 1000 nM), resulting in an 80 to 90% reduction of thymidine uptake. Although T lymphocyte activation (G0-G1a transition) by PHA was unaltered, cells remained in the G1a phase of the cell cycle due to insufficient RNA synthesis for proliferation. The addition of IL 2-containing supernatants reversed this inhibitory effect of DEX by allowing the cells to synthesize more RNA (G1a-G1b transition). Such cells could enter the S phase and proliferate. Similar studies were performed on cells treated with a monoclonal antibody (anti-Tac) against the IL 2 receptor. In these studies, IL 2-induced RNA synthesis, and subsequent proliferation of DEX-treated and PHA-stimulated cells was inhibited by anti-Tac. Anti-Tac did not, however, inhibit the effect of endogenous IL 2 (PHA-stimulated PBL without DEX treatment), although it did bind equally well to such cells. Thus, IL 2 directly or indirectly regulates human T cell proliferation at the level of RNA synthesis. Furthermore, anti-Tac can inhibit the mitogenic signal given by endogenous IL 2, but not by in situ produced IL 2, an observation of importance to further investigations of the mechanisms by which IL 2 interacts with specific receptors to elicit proliferation. 相似文献
9.
10.
Florian Weinberger Hans-Georg Hoppe Michael Friedlander 《Journal of applied phycology》1997,9(3):277-285
Of 45 bacterial isolates from healthy tips of Gracilaria conferta (Schousboe ex Montagne) J. et G. Feldmann, 29% were identified as ‘conditional inducers’ of an apical necrosis. That is, the isolates induced necrotic tips in G. conferta within 16 h after elimination of most of the resident microflora from the alga. Several disinfectants and antibiotics were screened for their ability to induce algal susceptibility to the bacteria and to suppress uncontrolled appearance of tip necrosis. Treatment with 100 mg L-1 Cefotaxim + 100 mg L-1Vancomycin over three days was the least damaging and most efficient. Tip necrosis was related to isolates of the Corynebacterium-Arthrobacter-group and to the Flavobacterium-Cytophaga-group. The damaging effect occurred due to the bacterial excretion of active agents and was not correlated with acapability to degrade agar. The damaging influence of four Cytophaga-likestrains was inhibited by 20 of 40 isolates. This protective effect was caused by very different organisms. In five of six cases examined further, the effect was not cellbound, but due to the excretion of agents. These were not antimicrobially active, but inactivated necrosis-inducing excretions. These results indicate that epiphytic bacterial degradation or inactivation of damaging agents is a protecting factor in Gracilaria, which prevents the alga from being harmed by epiphytes. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
11.
12.
Secretory leukocyte protease inhibitor (SLPI), a potent serine protease inhibitor, has been shown to suppress macrophage responses to bacterial lipopolysaccharide (LPS). SLPI contains two topologically superimposable domains. Its C-terminal domain binds and inhibits target proteases. It is not clear whether SLPI's anti-protease function plays a role in the LPS-inhibitory action of SLPI. Four single amino acid substitution mutants of SLPI, M73G, M73F, M73E and M73K, were generated. Wild type SLPI is a potent inhibitor of chymotrypsin and elastase. Mutants M73G and M73F selectively lost inhibitory function towards chymotrypsin and elastase, respectively, whereas mutants M73K and M73E inhibited neither elastase nor chymotrypsin. Macrophage cell lines were established from RAW264.7 cells to stably express each SLPI mutant. Expression of the SLPI protease inhibition mutants suppressed NO and TNF production in response to LPS in a similar fashion as wild type SLPI. Expression of truncated forms of SLPI, containing only its N-terminus or its C-terminus, was similarly sufficient to confer inhibition of LPS responses. Thus, the LPS-inhibitory action of SLPI is independent of its anti-protease function. 相似文献
13.
Various bacterial cell wall components have been shown to induce hyporesponsiveness in macrophages (MAC). Here, mycobacterial glycolipids were employed to determine whether they induce a state of 'tolerance/hyporesponsiveness' in MAC in vitro in order to assess whether mycobacterial components negatively affect the immune response to Mycobacterium tuberculosis. Arabinosylated lipoarabinomannan (ARA-LAM) stimulated hyporesponsiveness by reducing TNF-alpha, GM-CSF, G-CSF, IL-10, and IL-6 release similarly to LPS, but caused no changes in IL-8 secretion. Mannose-capped LAM (MAN-LAM) acted in a different way in that TNF-alpha, GM-CSF, and IL-10 were upregulated after restimulation of MAC. Blocking experiments by mannan suggest mannose-receptor involvement in MAN-LAM activation only. Cross-stimulation experiments demonstrated a hierarchy of signaling, with LPS being the most potent stimulator and mediating abrogation of ARA-LAM-stimulated tolerance but not vice versa. MAN-LAM was the least potent stimulator of either MAC activation and induction of hyporesponsiveness. Similarly to LPS, ARA-LAM upregulated CD14 surface expression after restimulation. Recurrent MAN-LAM treatment either downmodulated or did not induce any change in CD14 expression. The role of MAN-LAM regulated cytokine secretion as well as implications regarding M. tuberculosis infection will be discussed. 相似文献
14.
Witwicka H Kobiałka M Siednienko J Mitkiewicz M Gorczyca WA 《Biochimica et biophysica acta》2007,1773(2):209-218
It has been shown that cyclic GMP (cGMP) modulates the inflammatory responses of macrophages, but the underlying molecular mechanisms are still poorly understood. Looking for proteins potentially regulated by cGMP in rat peritoneal macrophages (PMs), in this study we analyzed expression and activity of cGMP-hydrolyzing and cGMP-regulated phosphodiesterases (PDEs). It was found that freshly isolated peritoneal exudate macrophages (PEMs) express enzymes belonging to families PDE1-3, PDE5, PDE10, and PDE11. Analysis of substrate specificity, sensitivity to inhibitors, and subcellular localization showed that PDE2 and PDE3 are the main cGMP-regulated PDE isoforms in PEMs. The profile of PDE expression was altered by maintaining PEMs in culture and treatment with bacterial endotoxin (LPS). After 24 h culture, PDE5 was not present and the levels of PDE2, PDE3, and PDE11 were markedly decreased. However, their expression and activity was recovered after treatment of cultured cells with LPS. A similar pattern of changes was observed for the expression of TNFalpha, but not for guanylyl cyclase A (GC-A). LPS up-regulated PDE expression also in resident peritoneal macrophages (RPMs), although not all PDEs present in PEMs were detected in RPMs. Taken together, our results show that in rat PMs expression of cGMP-dependent PDEs positively correlates with the activation state of cells. Moreover, the fact that most of these PDEs hydrolyze also cAMP indicates that cGMP can play a role of potent regulator of cAMP signaling in macrophages. 相似文献
15.
Control of lipopolysaccharide (LPS) binding and LPS-induced tumor necrosis factor secretion in human peripheral blood monocytes. 总被引:26,自引:0,他引:26
D Heumann P Gallay C Barras P Zaech R J Ulevitch P S Tobias M P Glauser J D Baumgartner 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(11):3505-3512
We used flow cytometry to determine how LPS-binding protein (LBP) effects the binding of fluorescein-labeled LPS to human monocytes via receptor-dependent mechanisms. The addition of human, rabbit, mouse, or FCS strikingly increased the binding of LPS to monocytes compared with controls incubated in serum-free medium. This binding was totally prevented by preincubation of monocytes with MY4, an anti-CD14 mAb, or by enzymatic removal of CD14 from monocytes. Depletion of LBP from rabbit serum with anti-LBP antibodies also produced a similar suppression. Solutions of albumin did not support the enhanced binding observed in serum but the addition of purified rabbit LBP to albumin solutions resulted in binding similar to that observed in serum-containing medium. When type-specific anti-LPS mAb was added to human serum, LPS binding to monocytes occurred but was only partly inhibited by anti-CD14 mAb, suggesting that receptors other than CD14 (presumably Fc or complement receptors) were involved. Serum increased by 100- to 1000-fold the sensitivity of monocytes to the triggering by LPS resulting in TNF secretion. TNF secretion was inhibited by anti-CD14 mAb up to 100 ng/ml of LPS and by anti-LPS mAb up to 1 to 10 ng/ml. The inhibition of TNF secretion by anti-LPS mAb appeared to be the result of directing LPS to monocyte receptors other than CD14. In contrast, in medium containing normal as well as acute serum and in the absence of anti-LPS antibodies, the binding of LPS to monocytes and the triggering of TNF secretion appeared to be mediated mainly by interactions between CD14 and LBP-LPS complexes. 相似文献
16.
Simultaneous addition of concanavalin A (Con A) and lipopolysaccharide (LPS) to cultures of rat spleen lymphocytes resulted in a synergistic effect on DNA synthesis as measured by increased [3H]thymidine uptake after 3 days. This effect was maximal when 10 μg of LPS was added to understimulating doses of Con A (synergistic index = 14) and diminished with increasing doses of the mitogen. In contrast to increasing concentrations of serum factors, LPS was not able to unblock the nonresponse of lymphocytes stimulated with supraoptimal doses of Con A. LPS did not exert its adjuvant effect by stimulating lymphocytes with the help of soluble factors released by Con A-activated cells. Both Con A and LPS seem rather to act together on a distinct population of T-cells which can be separated on nylon columns and respond twice as much as nonseparated cells to their synergistic combination. Rat B-cells were unresponsive to stimulation with Con A and LPS added alone or simultaneously. These results help to better understand some of the mechanisms involved in the immunological enhancement observed with LPS. 相似文献
17.
Khatchadourian A Bourque SD Richard VR Titorenko VI Maysinger D 《Biochimica et biophysica acta》2012,1821(4):607-617
Lipid droplets (LDs) are neutral lipid-rich organelles involved in many cellular processes. A well-known example is their accumulation in leukocytes upon activation by pro-inflammatory stimuli such as lipopolysaccharides (LPS) derived from gram-negative bacteria. A role of LDs and LD-associated proteins during inflammation in the brain is unknown, however. We have now studied their dynamics and regulation in microglia, the resident immune cells in the brain. We find that LPS treatment of microglia leads to the accumulation in them of LDs, and enhancement of the size of LDs. This induction of LDs was abolished by triacsin C, an inhibitor of triglyceride biosynthesis. LPS strongly activated c-Jun N-terminal kinase (JNK) and p38 MAPK stress signaling pathways and increased the expression of LD-associated protein perilipin-2 (ADRP) in a time-dependent manner. Immunostaining showed that perilipin-2 in LPS-treated microglia predominantly colocalized with LDs. Inhibitors of p38 α/β (SB203580) and PI3K/Akt pathway (LY294002), but not that of JNK (SP600125), reduced LPS-induced LD accumulation and eliminated the activating effect of LPS on perilipin-2. In addition, cytosolic phospholipase A(2) (cPLA(2)-α), a key enzyme for arachidonic acid release, colocalized with LPS-induced LDs. These observations suggest that LDs may play an important role in eicosanoid synthesis in activated microglia; they provide a novel insight into the regulation of LDs in inflammatory cells of the brain and point to a potential role of p38 α/β in LPS-induced LD accumulation. Collectively, our findings imply that LD formation and perilipin-2 induction could be microglial biomarkers of inflammation in the central nervous system. 相似文献
18.
Cutting edge: cationic antimicrobial peptides block the binding of lipopolysaccharide (LPS) to LPS binding protein 总被引:7,自引:0,他引:7
Scott MG Vreugdenhil AC Buurman WA Hancock RE Gold MR 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(2):549-553
We investigated the mechanism by which cationic antimicrobial peptides block the activation of macrophages by LPS. The initial step in LPS signaling is the transfer of LPS to CD14 by LPS binding protein (LBP). Because many cationic antimicrobial peptides bind LPS, we asked whether these peptides block the binding of LPS to LBP. Using an assay that measures the binding of LPS to immobilized LBP, we show for the first time that a variety of structurally diverse cationic antimicrobial peptides block the interaction of LPS with LBP. The relative ability of different cationic peptides to block the binding of LPS to LBP correlated with their ability to block LPS-induced TNF-alpha production by the RAW 264.7 macrophage cell line. 相似文献
19.
Exogenous ceramide-1-phosphate reduces lipopolysaccharide (LPS)-mediated cytokine expression 总被引:1,自引:0,他引:1
Hankins JL Fox TE Barth BM Unrath KA Kester M 《The Journal of biological chemistry》2011,286(52):44357-44366
20.
Vandenplas ML Carlson RW Jeyaretnam BS McNeill B Barton MH Norton N Murray TF Moore JN 《The Journal of biological chemistry》2002,277(44):41811-41816
Endotoxin (lipopolysaccharide (LPS)), a component of Gram-negative bacteria, is among the most potent proinflammatory substances known. The lipid-A region of this molecule initiates the production of multiple host-derived inflammatory mediators, including cytokines (e.g. tumor necrosis factor-alpha (TNFalpha)). It has been a continuous effort to identify methods of interfering with the interaction between enteric LPS and inflammatory cells using natural and synthetic LPS analogs. Some of these LPS analogs (e.g. Rhodobacter spheroides LPS/lipid-A derivatives) are antagonists in human cells but act as potent agonists with cells of other species. Data reported here indicate that structurally novel LPS from symbiotic, nitrogen-fixing bacteria found in association with the root nodules of legumes do not stimulate human monocytes to produce TNFalpha. Furthermore, LPS from one of these symbiotic bacterial species, Rhizobium sp. Sin-1, significantly inhibits the synthesis of TNFalpha by human cells incubated with Escherichia coli LPS. Rhizobium Sin-1 LPS exerts these effects by competing with E. coli LPS for binding to LPS-binding protein and by directly competing with E. coli LPS for binding to human monocytes. Rhizobial lipid-A differs significantly from previously characterized lipid-A analogs in phosphate content, fatty acid acylation patterns, and carbohydrate backbone. These structural differences define the rhizobial lipid-A compounds as a potentially novel class of LPS antagonists that might well serve as therapeutic agents for the treatment of Gram-negative sepsis. 相似文献