首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified the first stop-codon point mutation in mtDNA to be reported in association with human disease. A 36-year-old woman experienced episodes of encephalopathy accompanied by lactic acidemia and had exercise intolerance and proximal myopathy. Histochemical analysis showed that 90% of muscle fibers exhibited decreased or absent cytochrome c oxidase (COX) activity. Biochemical studies confirmed a severe isolated reduction in COX activity. Muscle immunocytochemistry revealed a pattern suggestive of a primary mtDNA defect in the COX-deficient fibers and was consistent with either reduced stability or impaired assembly of the holoenzyme. Sequence analysis of mtDNA identified a novel heteroplasmic G-->A point mutation at position 9952 in the patient's skeletal muscle, which was not detected in her leukocyte mtDNA or in that of 120 healthy controls or 60 additional patients with mitochondrial disease. This point mutation is located in the 3' end of the gene for subunit III of COX and is predicted to result in the loss of the last 13 amino acids of the highly conserved C-terminal region of this subunit. It was not detected in mtDNA extracted from leukocytes, skeletal muscle, or myoblasts of the patient's mother or her two sons, indicating that this mutation is not maternally transmitted. Single-fiber PCR studies provided direct evidence for an association between this point mutation and COX deficiency and indicated that the proportion of mutant mtDNA required to induce COX deficiency is lower than that reported for tRNA-gene point mutations. The findings reported here represent only the second case of isolated COX deficiency to be defined at the molecular genetic level and reveal a new mutational mechanism in mitochondrial disease.  相似文献   

2.
3.
The subunit structure of the cytochrome c oxidase complex has been obtained for three preparations each isolated by a different detergent procedure. Six polypeptides were present in all samples with the following molecular weights: subunits I, 36000; II, 22500, III, 17100; IV, 12500; V, 9700; and VI, 5300. These subunits have been purified by gel filtration in sodium dodecyl sulfate or in 6 M guanidine hydrochloride and their amino acid compositions have been determined. Subunit I is hydrophobic in character with a polarity of 35.7%. Subunits II through VI are more hydrophilic with polarities of 45.5, 48.6, 47.8, 49.7, and 53.7%, respectively.  相似文献   

4.
We have reinvestigated a young woman, originally reported by us in 1983, who presented with exercise intolerance and lactic acidosis associated with severe deficiency of complex III and who responded to therapy with menadione and ascorbate. Gradually, she developed symptoms of a mitochondrial encephalomyopathy. Immunocytochemistry of serial sections of muscle showed a mosaic of fibers that reacted poorly with antibodies to subunits of complex III but reacted normally with antibodies to subunits of complexes I, II, or IV, suggesting a mutation of mtDNA. These findings demonstrate the diagnostic value of immunocytochemistry in identifying specific respiratory-chain deficiencies and, potentially, distinguishing between nuclear- or mtDNA-encoded defects. Sequence analysis revealed a stop-codon mutation (G15242A) in the mtDNA-encoded cytochrome b gene, resulting in loss of the last 215 amino acids of cytochrome b. PCR-RFLP analysis indicated that the G15242A mutation was heteroplasmic and was present in a high percentage (87%) of affected tissue (skeletal muscle) and a low percentage (0.7%) of unaffected tissue (blood) but was not detected in controls. Analysis of microdissected muscle fibers showed a significant correlation between the immunoreactivity toward the Rieske protein of complex III and the percentage of mutant mtDNA: immunopositive fibers had a median value of 33% of the G15242A mutation, whereas immunonegative, ragged-red fibers had a median value of 89%, indicating that the stop-codon mutation was pathogenic in this patient. The G15242A mutation was also present in several other tissues, including hair roots, indicating that it must have arisen either very early in embryogenesis, before separation of the primary germ layers, or in the maternal germ line. The findings in this patient are contrasted with other recently described patients who have mutations in the cytochrome b gene.  相似文献   

5.
Strains of the yeast Saccharomyces cerevisiae disrupted in YCOX4, the nuclear gene encoding cytochrome c oxidase subunit IV, do not assemble a functional or spectrally visible oxidase. We report the characterization of a yeast strain, RM1, expressing a mutated YCOX4 gene which is temperature sensitive for respiration at 37 degrees C, but incorporates cytochrome aa3 over all growth temperatures. The mutant enzyme is less stable than the wild type, with subunit IV readily proteolyzed without gross denaturation of the complex but with a concomitant loss of oxidase activity. When grown fermentatively at 37 degrees C, cytochrome c oxidase from the mutant strain had a turnover number of less than 3% of the normal complex, while Km values and subunit levels were comparable to normal. Thus alterations in subunit IV can perturb the enzyme structure and alter its catalytic rate, implying a role for this subunit in cytochrome c oxidase function as distinct from assembly.  相似文献   

6.
7.
8.
9.
Cytochrome c oxidase isolated from ox heart forms a complex in the presence of millimolar concentrations of CO with absorption bands at 606, 565 and 435 nm (difference spectrum), distinct from both ferrocytochrome a and the classical 590nm carbon-monoxyferrocytochrome a3. This species, which closely resembles Compound C, the derivative formed on photolysis and oxygenation of mixed-valence cytochrome a3+a32+CO, may represent a cytochrome a32+CO complex in which the associated ('invisible') copper is still oxidized.  相似文献   

10.
11.
The complete primary structure of the cytoplasmically synthesized polypeptide IV from beef heart cytochrome oxidase was determined via isolation and sequencing of overlapping methionine, tryptophan, and arginine fragments. The protein consists of 147 amino acids (Mr 17153). It is characterized as a part of a membrane protein complex by a hydrophobic segment consisting of 19 residues. It is suggested that this segment contacts the lipids of the inner mitochondiral membrane. Additional specific contacts may result from pairwise formation of salt bridges between ionic groups of the protein and the phospholipids. The function of this component of the terminal oxidase is yet unknown.  相似文献   

12.
13.
As part of our study of isoenzyme forms of human cytochrome c oxidase, we purified subunit IV from human heart and skeletal muscle with reversed-phase HPLC and determined the N-terminal amino acid sequences and the electrophoretic mobility. The N-terminus of human heart subunit IV proved to be ragged with 30% of the protein lacking the first three residues. Also a Tyr/Phe polymorphism was observed at residue 16. No differences in N-terminal sequence and electrophoretic mobility were observed between subunit IV of cytochrome c oxidase from human heart and skeletal muscle. Therefore, our results suggest that identical subunits IV are present in cytochrome c oxidase from human heart and skeletal muscle. A putative isoform of subunit IV with a blocked N-terminus was purified from human heart cytochrome c oxidase, which proved to have a different retention time on a reversed-phase column and also a slightly higher electrophoretic mobility on an SDS-polyacrylamide gel compared to the native subunit IV. We could not demonstrate the existence of isoforms of subunit IV in human skeletal muscle.  相似文献   

14.
Intramolecular electron transfer in the electrostatic cytochrome c oxidase/cytochrome c complex was investigated using a novel photoactivatable dye. Laser photolysis of thiouredopyrenetrisulfonate (TUPS), covalently linked to cysteine 102 on yeast iso-1-cytochrome c, generates a triplet state of the dye, which donates an electron to cytochrome c, followed by electron transfer to cytochrome c oxidase. Time-resolved optical absorption difference spectra were collected at delay times from 100 ns to 200 ms between 325 and 650 nm. On the basis of singular value decomposition (SVD) and multiexponential fitting, three apparent lifetimes were resolved. A sequential kinetic mechanism is proposed from which the microscopic rate constants and spectra of the intermediates were determined. The triplet state of TUPS donates an electron to cytochrome c with a forward rate constant of approximately 2.0 x 10(4) s(-1). A significant fraction of the triplet returns back to the ground state on a similar time scale. The reduction of cytochrome c is followed by faster electron transfer from cytochrome c to Cu(A), with the equilibrium favoring the reduced cytochrome c. Subsequently, Cu(A) equilibrates with heme a with an apparent rate constant of approximately 1 x 10(4) s(-1). On a millisecond time scale, the oxidized TUPS returns to the ground state and heme a becomes reoxidized. The extracted intermediate spectra are in excellent agreement with model spectra of the postulated intermediates, supporting the proposed mechanism.  相似文献   

15.
Vectorially oriented monolayers of yeast cytochrome c and its bimolecular complex with bovine heart cytochrome c oxidase have been formed by self-assembly from solution. Both quartz and Ge/Si multilayer substrates were chemical vapor deposited with an amine-terminated alkylsiloxane monolayer that was then reacted with a hetero-bifunctional cross-linking reagent, and the resulting maleimide endgroup surface then provided for covalent interactions with the naturally occurring single surface cysteine 102 of the yeast cytochrome c. The bimolecular complex was formed by further incubating these cytochrome c monolayers in detergent-solubilized cytochrome oxidase. The sequential formation of such monolayers and the vectorially oriented nature of the cytochrome oxidase was studied via meridional x-ray diffraction, which directly provided electron density profiles of the protein(s) along the axis normal to the substrate plane. The nature of these profiles is consistent with previous work performed on vectorially oriented monolayers of either cytochrome c or cytochrome oxidase alone. Furthermore, optical spectroscopy has indicated that the rate of binding of cytochrome oxidase to the cytochrome c monolayer is an order of magnitude faster than the binding of cytochrome oxidase to an amine-terminated surface that was meant to mimic the ring of lysine residues around the heme edge of cytochrome c, which are known to be involved in the binding of this protein to cytochrome oxidase.  相似文献   

16.
17.
《BBA》2023,1864(2):148956
The crystal structure of bovine cytochrome c oxidase (CcO) shows a sodium ion (Na+) bound to the surface of subunit I. Changes in the absorption spectrum of heme a caused by calcium ions (Ca2+) are detected as small red shifts, and inhibition of enzymatic activity under low turnover conditions is observed by addition of Ca2+ in a competitive manner with Na+. In this study, we determined the crystal structure of Ca2+-bound bovine CcO in the oxidized and reduced states at 1.7 Å resolution. Although Ca2+ and Na+ bound to the same site of oxidized and reduced CcO, they led to different coordination geometries. Replacement of Na+ with Ca2+ caused a small structural change in the loop segments near the heme a propionate and formyl groups, resulting in spectral changes in heme a. Redox-coupled structural changes observed in the Ca2+-bound form were the same as those previously observed in the Na+-bound form, suggesting that binding of Ca2+ does not severely affect enzymatic function, which depends on these structural changes. The relation between the Ca2+ binding and the inhibitory effect during slow turnover, as well as the possible role of bound Ca2+ are discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号