首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified and crude flagellar isolates from cells of Bacillus pumilus NRS 236 were treated with acid, alcohol, acid-alcohol, or heat, and were examined electron microscopically in negatively stained and shadow-cast preparations. Under certain conditions, each of these agents causes the flagella to break between the proximal hooks and the spiral filaments. In such preparations, filaments are seen in various stages of disintegration, whereas hooks of fairly constant length retain their integrity and morphological identity. When crude isolates of flagella are treated under these conditions, the hooks remain attached to membrane fragments or bear basal material. These findings substantiate previous structural observations that led to the view that the proximal hook is a distinct part of the bacterial flagellum and further confirm that the hook is tightly associated with basal material and the cytoplasmic membrane. It appears that the hook is a polarly oriented structure, and that the interactions between the hook and the basal material or the cytoplasmic membrane are different from those between the hook and the filamentous portion of the organelle. Moreover, both types of interaction apparently differ still from those by which the flagellin subunits are held together in the flagellar filament. Hooks were isolated by exploiting the differences in relative stability shown by the various morphological regions of the bacterial flagellum.  相似文献   

2.
Electron microscopy of thin-sectioned Spirillum volutans (ATCC 19554) showed that at the insertion site of the flagellum there was a cylindrical structure with a diameter of ca. 36 nm which extended ca. 19 nm into the cytoplasm. This structure, termed a cytoplasmic flagellar base, enclosed a central rod which was continuous with the hook. There was a continuation of the flagellar base into the peptidoglycan layer, enclosing ringlike structures and the central rod. The flagellar hook and proximal part of the flagellar filament contained a central channel which was large enough to accommodate the flagellin subunit. The flagella of fixed cells may project perpendicularly from the outer membrane in a position corresponding to a trailing, swimming orientation or may bend almost parallel to the membrane in a leading orientation. Maximum bending occurred in the hook region, which may be the structure responsible for executing changes in swimming direction.  相似文献   

3.
Basal structure and attachment of flagella in cells of Proteus vulgaris   总被引:18,自引:14,他引:4  
Abram, Dinah (Purdue University, Lafayette, Ind.), Henry Koffler, and A. E. Vatter. Basal structure and attachment of flagella in cells of Proteus vulgaris. J. Bacteriol. 90:1337-1354. 1965.-The attachment of flagella to cells of Proteus vulgaris was studied electron microscopically with negatively stained and shadow-cast preparations of ghosts from standard cultures and from special cultures that produced "long forms." The flagellum, the basal portion of which is hooked, arises within the cell from a nearly spherical structure, 110 to 140 A in diameter. This structure appears to be associated with the cytoplasmic membrane; it may be a part of the membrane or a separate entity that lies just beneath the membrane. Flagella associated with cell walls free from cytoplasmic membrane frequently have larger bodies, 200 to 700 A in diameter, associated with their base. These structures probably consist at least partly of fragments of the cytoplasmic membrane, a portion of which folds around a smaller structure. Flagella in various stages of development were observed in long forms of P. vulgaris cells grown at low temperature. The basal structure of these flagella was similar to that of the long or "mature" flagella. Strands connecting the basal structures were observed in ghosts of long forms; these strands appear to be derived from the cytoplasmic membrane. Flagella were found to be attached to fragments of cell wall and to cytoplasmic membrane in a similar manner as they are attached to ghosts. In isolates of flagella that have been separated from the cells mechanically, the organelles often terminate in hooks which almost always appear naked, but have a different fine structure than the flagellum proper.  相似文献   

4.
Intact flagella were isolated from human pathogenic strains of Campylobacter, C. fetus subsp. intestinalis and C. fetus subsp. jejuni, by the method of DePamphilis and Adler and examined by electron microscopy. The isolated flagella were composed of a filament, a hook, a basal body, and a large disk associated with the end of the hook region covering the basal body. The width of the hook was approximately 28 nm, somewhat greater than that of the filament (20 nm in diameter). The hook region of C. fetus subsp. intestinalis was curved, but it was straight in C. fetus subsp. jejuni. The structure of the basal body of the two subspecies was similar to that reported for other gram-negative bacteria. The large disk detached from the flagella showed concentrically arranged circular structures. This structure was more clearly observed in the disk of C. fetus subsp. jejuni than in C. fetus subsp. intestinalis. Observations of thin-sectioned profiles at the attachment site of the flagellum revealed that the large disk is located on the inner side of the outer membrane. The role of the large disk in bacterial movement is not clear, but it is assumed that it acts as an organ to protect the flagellar insertion site from vigorous rotation of the polar end inflicted during bacterial movement.  相似文献   

5.
Summary The fine structure of Azotobacter vinelandii was examined using a micro-colony embedding method. With this technique the difficulty of obtaining well preserved bacterial flagella in thin sections of material prepared in the usual fashion for electron microscopy was overcome, as the cells and their appendages were held in their natural position. The insertion of flagella and their substructure as revealed by thin sectioning and negative staining was studied. The results obtained on the fine structure of the flagellum is discussed and a possible interpretation of the arrangement of sub-units is presented in a model. Some new inclusions and membranous structures in the cytoplasm of the cells are described. These structures do not appear to be involved in tellurite reduction. These is no evidence to indicate that the flagellar insertion sites showed any activity of tellurite reduction. Thus in Azotobacter, other systems seem to be responsible for the ability of the cells to reduce tellurite.  相似文献   

6.
7.
The mode of polymerization of two species of flagellins, flagellin A and flagellin B, in polar flagella of Caulobacter crescentus was examined. By immunological staining we found that 1 to 1.2 μm of the portion of the flagellar filament proximal to the cell was composed of flagellin B, whereas about 5 μm of the distal portion was composed of flagellin A. This result, together with the previous observation that a flagellin B-less mutant cannot form normal flagella but instead forms stubs in spite of their high level of flagellin A synthesis, indicates that flagellin B is very important for the formation of complete flagella and/or for the initiation of filament formation from the hook.  相似文献   

8.
A procedure is described for the purification of the Escherichia coli outer membrane (lipopolysaccharide or L membrane) with flagella still attached. The resulting lipopolysaccharide membrane was in the form of vesicles that had a trilaminar structure in thin section and contained about 55% lipopolysaccharide and 45% protein. T2 or T4 phage preadsorbed to E. coli were found attached to the purified lipopolysaccharide membrane. Flagella were bound to the purified lipopolysaccharide membrane specifically at the basal body ring closest to the hook (the L ring). The cytoplasmic membrane in preparations from osmotically lysed E. coli spheroplasts or Bacillus subtilis protoplasts was specifically attached to flagella at the basal body ring farthest from the hook (the M ring). In the E. coli preparation, lipopolysaccharide membrane was also present and was attached to the L ring. From these data and a knowledge of the structure and dimensions of the E. coli flagellar basal body and cell envelope, a model for flagellar attachment is deduced.  相似文献   

9.
The flagella of Methanococcus voltae were isolated by using three procedures. Initially, cells were sheared to release the filaments, which were purified by differential centrifugation and banding in KBr gradients. Flagella were also prepared by solubilization of cells with 1% (vol/vol) Triton X-100 and purified as described above. Both of these techniques resulted in variable recovery and poor yield of flagellar filaments. Purification of intact flagella (filament, hook, and basal body) was achieved by using phase transition separation with Triton X-114. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified flagella revealed two major proteins, with molecular weights of 33,000 and 31,000. This result indicates the likely presence of two flagellins. The filament had a diameter of 13 nm. The basal structure consisted of a small knob, while a slight thickening of the filament immediately adjacent to this area was the only evidence of a hook region. Flagella from three other Methanococcus species were isolated by this technique and found to have the same ultrastructure as flagella from M. voltae. Isolation of flagella from three eubacteria and another methanogen (Methanospirillum hungatei [M. hungatii]) by the phase separation technique indicated that the detergent treatment did not affect the structure of basal bodies. Intact ring structures and well-differentiated hook regions were apparent in each of these flagellar preparations.  相似文献   

10.
11.
In Caulobacter crescentus biogenesis of the flagellar organelle occurs during one stage of its complex life cycle. Thus in synchronous cultures it is possible to assay the sequential synthesis and assembly of the flagellum and hook in vivo with a combination of biochemical and radioimmunological techniques. The periodicity of synthesis and the subcellular compartmentation of the basal hook and filament subunits were determined by radioimmune assay procedures. Unassembled 27,000-dalton (27K) flagellin was preferentially located in isolated membrane fractions, whereas the 25K flagellin was distributed between the membrane and cytoplasm. The synthesis of hook began before that of flagellin, although appreciable overlap of the two processes occurred. Initiation of filament assembly coincided with the association of newly synthesized hook and flagellin subunits. Caulobacter flagella are unusual in that they contain two different flagellin subunits. Data are presented which suggest that the ratio of the two flagellin subunits changes along the length of the filament. Only the newly synthesized 25K flagellin subunit is detected in filaments assembled during the swarmer cell stage. By monitoring the appearance of flagellar hooks in the culture medium, the time at which flagella are released was determined.  相似文献   

12.
Synthesis and Structure of Caulobacter crescentus Flagella   总被引:30,自引:27,他引:3  
During the normal cell cycle of Caulobacter crescentus, flagella are released into the culture fluid as swarmer cells differentiate into stalked cells. The released flagellum is composed of a filament, hook, and rod. The molecular weight of purified flagellin (subunit of flagella filament) is 25,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The formation of a flagellum opposite the stalk has been observed by microscope during the differentiation of a stalked cell in preparation for cell division. By pulsing synchronized cultures with (14)C-amino acids it has been demonstrated that the synthesis of flagellin occurs approximately 30 to 40 min before cell division. Flagellin, therefore, is synthesized at a discrete time in the cell cycle and is assembled into flagella at a specific site on the cell. A mutant of C. crescentus that fails to synthesize flagellin has been isolated.  相似文献   

13.
Basal Organelles of Bacterial Flagella   总被引:19,自引:16,他引:3  
Liberated by enzymatic lysis of the cells, the flagella of Rhodospirillum rubrum, R. molischianum, and R. fulvum all have a similar structure. The hook at the base of the flagellum is connected by a short, narrow collar to a paired disc in the basal organelle. This paired disc is in turn connected to a second paired disc. The disposition of flagella to which fragments of the cell membrane still adhere suggests that the narrow collar at the base of the hook traverses both the wall and the membrane, and that the upper pair of discs in the basal organelle lies just beneath the surface of the membrane.  相似文献   

14.
The fine structure of Spirochaeta stenostrepta strain Z1, a free-living anaerobic spirochete, was studied by electron microscopy. The organism possessed a coiled protoplasmic cylinder, an axial filament inserted subterminally, and a loosely fitting sheath which enclosed both the protoplasmic cylinder and the axial filament. The axial filament consisted of two fibrils partially overlapping in a 1-2-1 arrangement. The axial fibrils appeared to possess a sheath surrounding an inner core. Both inner core and sheath were apparently enclosed in a cross-striated tubular structure, which was itself surrounded by an outer sheath. The axial filament exhibited a basal hook. A disc- or mushroom-shaped structure, possibly consisting in part of cytoplasmic membrane, was observed at the insertion end of isolated filaments. The protoplasmic cylinder had a distinctive surface structure consisting of an array of tightly packed, longitudinally arranged helices measuring 2.0 to 2.5 nm in diameter. This layer of helices lay below the outer cell sheath and the axial filament. Ballistic disintegration loosened the helical array, causing individual helices or segments of helices to become separated from the cell. The function of this layer of helices is still obscure.  相似文献   

15.
The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly‐conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68‐amino acid FHIPEP region. Fifty‐two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short‐stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un‐polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook‐cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook‐filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook‐length control protein FliK and facilitated growth of full‐length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.  相似文献   

16.
The flagellar morphology of 88 Vibrio parahaemolyticus strains, including a strain descended from Fujino's original strain EB101 (= ATCC17802 = KM1339) was studied. EB101 and 83 other strains (95%) showed mixed polar and peritrichous type of flagellation when grown on modified MOF (MMOF) agar after 16-hr incubation at 20 C. Cultures containing numerous peritrichous cells showed wiggly movements in moist preparations and rapidly spreading growth in semisolid agar plates. Peritrichous flagella were easily removed mechanically from the soma. The mean wavelengths of polar and peritrichous flagella were 2.53 μm (normal type) and 1.72 μm (atypical curly type) respectively. Peritrichous cells on solid media appeared after incubation for 2.5 hr at 37 C and 7 hr at 20 C. Overnight incubation at 37 C and acidity of the medium due to fermentation of carbohydrate markedly ruined peritrichous flagella. Electron micrograph of cells grown on MMOF agar revealed a sheathed polar flagellum and unsheathed peritrichous flagella. A hook structure was demonstrated at the proximal end of the latter. Polar monotrichous cultures in MMOF broth sometimes contained some cells having several or many peritrichous flagella of atypical curly type. Seven strains of Vibrio cholerae were exclusively polar monotrichous on solid and in liquid media. The flagellation of V. parahaemolyticus is concluded as being a mixed polar-peritrichous type. This fact would indicate that V. parahaemolyticus should be excluded from the genus Vibrio, since the genus Vibrio was defined as polar monotrichous.  相似文献   

17.
The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates.  相似文献   

18.
Purification and antigenic analysis of flagella of Campylobacter jejuni   总被引:1,自引:0,他引:1  
The flagella of Campylobacter jejuni strain FUM158432 were purified and a flagellin preparation consisting of only a single peptide of 63,000 daltons was obtained. The peptide of 92,000 daltons usually associated with a flagellar preparation was shown to be a peptide derived from the hook region. Antiserum was prepared by immunizing a rabbit with the flagellin preparation. The reaction of the antiserum was found to be highly specific for the flagellar filament by immunoelectron microscopy and for flagellin peptide by the immunoblotting method. Seventeen of 23 clinically isolated strains of C. jejuni reacted with this antiserum but the other six strains did not, indicating the existence of antigenic variation of the flagella of C. jejuni. The flagella of a few strains of C. coli also reacted with this antiserum.  相似文献   

19.
Flynn TC  Ma J 《Biophysical journal》2004,86(5):3204-3210
Certain motile bacteria employ rotating flagella for propulsion. The relative flexibility of two key components of the flagellum, filament and hook, is partially responsible for the mechanistic workings of this motor. A new computational method, the quantized elastic deformational model, was employed in this article to calculate the dimensionless twist/bend ratio (EI/GJ) of the filament and hook, providing a quantitative means to compare their relative stiffness. Both ratios were much <1.0, an average of 0.0440 for the filament and 0.0512 for the hook, indicating that within each structure bending is favored over twisting. These two ratios, along with previous experimental measurements, allowed us to propose a theoretical Young's modulus (E) between 10(6) and 10(7) dyn/cm(2) for the hook. This value is orders of magnitude smaller than experimentally determined Young's moduli of the filament, hence in agreement with empirical evidence linking compliance in the flagellum mainly to the hook.  相似文献   

20.
Insertion of nitrate reductase into the Escherichia coli cytoplasmic membrane was examined by following the fate of pulse-labeled enzyme in both the membrane and cytoplasm during various times after the addition of an unlabeled chase. The polypeptide composition of this labeled enzyme was determined by autoradiography of immunoprecipitated material after separation on sodium dodecyl sulfate-polyacrylamide gels. The data presented here indicate that immediately after appropriate insertion of the enzyme into the membrane, a post-translational event occurs which converts the cytoplasmically synthesized form of subunit B (B') to the form found in the completely assembled enzyme (B). B' is distinguished from B by its more rapid electrophoretic mobility. B' was found in the cytoplasm of all strains tested, in the membrane of strains with defects in enzyme insertion (hemA and chlE), and as a transient component in the membrane of wild-type cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号