首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to investigate the effect of infusion of purified FSH alone on follicle development in hypogonadotrophic GnRH agonist-treated gilts. Large-White hybrid gilts (n = 12) were treated during the mid-luteal phase and again after 28 days (day 0) with a potent slow releasing GnRH agonist. On day 3, seven gilts were infused for 168 h with 1.5 S1 units oFSH h-1 (equivalent to 1.5 units of bioactivity of NIH-FSH-S1 standard) and blood samples were collected. Ovaries were then recovered and all follicles > or = 1 mm in diameter were dissected and incubated for 2 h in 1 ml Eagle's minimum essential medium. The ovaries were recovered from the remaining five GnRH agonist-treated gilts on day 10 and also from five cyclic gilts during the late follicular phase (controls). Plasma FSH concentrations in GnRH agonist-treated gilts were lower (P < 0.01) than in follicular phase controls, increased (P < 0.001) after 1 h of FSH infusion and reached a plateau similar (P > 0.1) to that of controls after 8 h. Basal LH concentrations were similar (P > 0.1) between GnRH agonist-treated and control gilts and remained unchanged (P > 0.1) throughout the infusion period. GnRH agonist treatment reduced (P < 0.01) basal oestradiol concentrations compared with control gilts. Infusion with FSH alone increased (P < 0.001) plasma oestradiol concentrations after 96 h compared with those before infusion; when the animals were killed oestradiol concentrations were higher (P < 0.01) in GnRH agonist-treated gilts infused with FSH than in controls. This was also apparent by vulval swelling and behavioural oestrus. There were more follicles > or 1 mm in diameter in the GnRH agonist-treated groups than in the controls (184, 153 and 86 per animal; P < 0.01). Infusion with FSH increased the maximum follicle diameter (GnRH agonist: < 4 mm; FSH infused: < 12 mm; controls: < 10 mm) and tended to increase (P < 0.07) the mean number of follicles > or = 6 mm diameter per animal (FSH infused: 53; controls: 21). Total oestradiol production in vitro by follicles > or = 1 mm was higher (P < 0.01) in GnRH agonist-treated gilts infused with FSH and in follicular phase controls than in animals treated with GnRH agonist alone. However, oestradiol and testosterone secretion in vitro per follicle > or = 6 mm in diameter was lower (P < 0.05) in FSH-infused animals than in controls. In summary, although infusion of FSH alone stimulated the growth of multiple follicles of preovulatory size in GnRH agonist-treated gilts, steroidogenic output by individual follicles was impaired.  相似文献   

2.
Follicular dynamics and ovulation were compared in 3 groups of anestrous ewes: those treated with medroxyprogesterone acetate (MAP) sponges for 12 d, then with 750 IU PMSG at the time of sponge removal (P4 + PMSG, n = 6), or PMSG alone (n = 6) and untreated controls (n = 6). Waves of follicular activity were observed in all the animals. In the P4 + PMSG treatment group, MAP priming permitted more ovulatory follicles (P < 0.001) to be recruited without changing follicle growth rate; MAP priming also delayed the time of ovulation (P < 0.001) and the time of the LH surge (P < 0.01), which allowed for an increase in the size of ovulatory follicles (P < 0.05). Ovulation also resulted in normal luteal function after P4 + PMSG (P < 0.01) but not after PMSG alone, since premature luteal regression occurred in 80% of the cases and was related to the presence of follicles > 4 mm when P4 levels were < 1 ng/mL on the day following ovulation. The results showed that MAP priming increased the ovulation rate by increasing the number of follicles that responded to PMSG.  相似文献   

3.
Four streptozotocin-diabetic gilts (maintained on exogenous insulin for 3 months) and 4 normoglycaemic gilts were treated with 600 i.u. PMSG. Diabetic gilts had insulin therapy removed at the time of PMSG administration. Plasma glucose averaged 463 +/- 5 mg/100 ml for diabetic gilts and 82 +/- 4 mg/100 ml for control gilts over the 72-h sampling period. Serum insulin was lower in diabetic than in normoglycaemic gilts (glycaemic state by time interaction; P less than 0.0001). At ovary removal 75 h after PMSG, numbers and percentages of large (greater than or equal to 7 mm) and medium (3-6 mm) non-atretic follicles were similar for diabetic and control gilts (31 vs 68%; s.e.m. = 7; P less than 0.05). Diabetic gilts had a greater percentage of atretic follicles over all size classes (50 vs 21%; s.e.m. = 7; P less than 0.03). After PMSG, LH was suppressed within 12 h in control gilts and remained similar to values in diabetic gilts until 72 h, when LH was elevated in 2 diabetic gilts (glycaemic state by time interaction; P less than 0.001). Pulsatile LH patterns during 52-55 h after PMSG were not affected by glycaemic state. Serum concentrations of IGF-I tended (P less than 0.1) to be lower in diabetic gilts. Concentrations of oestradiol and FSH in serum were similar in diabetic and control gilts. Follicular fluid concentrations of oestradiol in follicles greater than or equal to 7 mm were lower in diabetic than normoglycaemic gilts (341 vs 873 ng/ml; s.e.m. = 86; P less than 0.05). Testosterone was higher in follicles 3-6 mm in diameter in diabetic than in normoglycaemic gilts (142 vs 80 ng/ml; s.e.m. = 26; P less than 0.05). Progesterone concentrations in follicular fluid were not affected by glycaemic state. Concentrations of IGF-I in follicles greater than or equal to 7 mm were lower in diabetic than control gilts (150 vs 200 ng/ml; s.e.m. = 13; P less than 0.05). We conclude that follicles of diabetic gilts respond to external gonadotrophic stimulation with decreased hormone production and increased ovarian follicular atresia, despite an absence of effects on circulating gonadotrophin and oestradiol concentrations.  相似文献   

4.
Methods for the control of ovulation with GnRH or the GnRH analog D-Phe6 -LHRH (GnRH-A), were evaluated in gilts and sows as the last step in development of a fixed-time Al protocol. This involved 3 field trials using 2,744 gilts (10 units) and 71,628 sows (33 units). In Trial 1, the GnRH-A (75 microg) was given subsequent to treatment with altrenogest for cycle control or eCG for the stimulation of uniform follicle development in gilts. The release of LH was followed by ovulations which commenced within 36.4 +/- 3.3 hr and were terminated at 39.0 +/- 2.8 hr after administration of GnRH-A. This degree of synchronization of ovulations enabled the use of fixed-time AI. Consequently, subsequent to pretreatment with altrenogest and eCG, in 10 production units 1,285 gilts received 50 microg GnRH-A and 1,459 gilts 500 IU hCG serving as positive controls (Trial 2); all the gilts were inseminated 24 and 42 hr after treatment. Pregnancy rate and piglet index (n of piglets per 100 first inseminations) following GnRH-A vs hCG were 78.8% and 779 vs 74.4% and 728, respectively (P < 0.05). In field trials with first litter gilts and multiparous sows (33 units holding from 250 to 6,000 sows), 1,000 IU eCG was used for estrus control after weaning and 25 microg or 50 microg GnRH-A were given 55 to 58 hours after eCG (n = 19,954 and 20,701) (Trial 3). Sows treated during the same time period with 300 microg GnRH plus 300 IU. hCG (n = 30,973) served as positive controls; all sows were inseminated 24 and 42 hours after treatment. Pregnancy rates for 50 microg GnRH-A, 25 microg GnRH-A and 300 microg GnRH plus 300 IU hCG were 83.0%, 81.7% and 80.7%, and the piglet indices 913, 899 and 880, respectively (P < 0.05). Unit size and parity had significant effects on fertility and productivity. In all studies, results with 50 microg GnRH-A were superior. In year-long studies, highest levels of fertility in response to these treatments were seen from December to May.  相似文献   

5.
Prevention of high plasma progesterone concentrations in the early postpartum period may improve fertility. Our objective was to determine whether a Deslorelin implant (DESL; 2100 microg, s.c.) would reduce secretion of LH and alter follicle dynamics, plasma concentrations of progesterone, estradiol and PGF2alpha metabolite (PGFM) in postpartum dairy cows. Cows received DESL on Day 7 postpartum (Day 7, n=8) or were untreated (Control, n=9). All cows were injected with GnRH (100 microg, i.m.) on Day 14 to assess LH response. A protocol for synchronization of ovulation with timed AI was initiated on Day 60 (GnRH [Day 60], CIDR [Day 60 to Day 67], PGF2alpha [Day 67, 25 mg and Day 68, 15 mg], GnRH [Day 69] , AI [Day 70]). The LH response to injection of GnRH on Day 14 was blocked in animals treated with DESL. Numbers of Class 1 (<6 mm) follicles were unaffected (P > 0.05) whereas numbers of Class 2 (6 to 9 mm) (P < 0.01) and Class 3 (>9 mm) follicles were less (P < 0.01) in DESL cows between Day 7 and Day 21. From Day 22 to Day 60, DESL-treated cows had more of Class 1 follicles and less Class 2 (P < 0.01) and Class 3 (P < 0.01) follicles, and lower plasma concentrations of progesterone and estradiol (P < 0.01). Concentrations of PGFM between Day 7 and Day 42 were not affected by treatment (P > 0.05). All cows ovulated in response to GnRH on Day 69. Subsequent luteal phase increases in plasma progesterone concentrations (Day 70 to Day 84) did not differ. The use of the DESL implant associated with PGF2alpha given 14 days later suppressed ovarian activity and caused plasma progesterone concentrations to remain < 1 ng/mL between Day 22 and Day 51. The DESL implant did not affect milk production.  相似文献   

6.
The aim of this study was to determine, for goats, the effects of daily doses of GnRH antagonist on ovarian endocrine and follicular function. Ten does were given 45 mg FGA intravaginal sponges and then five were treated with daily injections of 0.5mg of the GnRH antagonist Teverelix for 11 days from 2 days after the day of sponge insertion, while five does acted as controls. Pituitary activity was monitored by measuring plasma FSH and LH daily from 2 days before the first GnRH injection to Day 12. Follicular activity was determined by ultrasonographic monitoring and by assessing plasma inhibin A levels during the same period. In treated does, the FSH levels decreased linearly (0.8 +/- 0.1 ng/ml to 0.5 +/- 0.1 ng/ml, P < 0.01) and remained lower than the mean concentration in control goats (0.8 +/- 0.1 ng/ml, P < 0.005). LH levels were also lower during the period of antagonist treatment (0.6 +/- 0.2 ng/ml versus 0.4 +/- 0.1 ng/ml, P < 0.0005). During GnRH antagonist treatment, there was a significant decrease in the number of large follicles (> or = 6 mm) from Day 3 of treatment (1.2 +/- 0.6, P < 0.0001), with no large follicles from Day 9. The number of medium follicles (4-5 mm in size) also decrease during the period of treatment (4.2 +/- 0.7 to 1.0 +/- 0.6, P < 0.0001), leading to a significant decrease in inhibin A levels when compared to the control (143.7 +/- 31.3 pg/ml versus 65.2 +/- 19.1 pg/ml, P < 0.00005). In contrast, the number of small follicles (2-3 mm) increased in treated goats from Day 4 of treatment (9.6 +/- 2.9 to 20.2 +/- 6.3, P < 0.005). Such data indicate that GnRH antagonist reduced plasma levels of FSH and LH with suppression of the growth of large dominant ovarian follicles and a two-fold increase in number of smaller follicles. The results confirm that GnRH antagonist treatment can be used in goats to control gonadotrophin secretion and ovarian follicle growth in superovulatory regimes.  相似文献   

7.
Endocrine control of follicular growth was determined by observing the left ovary of prepubertal calves previously treated with a potent GnRH agonist for 13 days. The ovarian response to hormonal stimulation was determined using the right ovaries of the same animals. Three-month-old crossbred calves were assigned to one of the two following treatment groups: 1) saline control for 13 days, with purified porcine FSH for the last 3 days (n = 5); and 2) GnRHa for 13 days, with purified porcine FSH for the final 3 days (n = 5). The left ovaries were removed from all calves after 10 days, and the right ovaries were removed at the end of treatment. Plasma concentrations of FSH, LH and oestradiol-17 beta were followed up during the GnRHa and pFSH treatments. The maximum macroscopic diameter of the F1 follicle, as determined by daily ultrasonography, did not differ between GnRHa-treated calves (from 6.6 to 10.4 mm) and the saline control calves (from 6.7 to 10.3 mm). Histological analysis of the ovaries showed that the number of follicles > 0.40 mm in diameter varied greatly for calves of the two groups (from 11 to 220 at 10 days). GnRHa significantly increased the mean number of follicles (total and nonatretic) of size class > 5.4 mm as compared to saline control calves (P < 0.05). The FSH treatment significantly increased the mean number of follicles 3.00-5.4 and > 5.4 mm in diameter (P < 0.05), with no change in the number of follicles smaller than 3.00 mm. The rate of atresia of large follicles (3.01-5.40 mm) was significantly reduced by purified porcine FSH treatment in both groups (P < 0.05). In no case did the GnRHa induce ovulation or luteinization of follicles. The LH and FSH concentrations increased transiently after GnRHa treatment on the first day, but afterwards, both hormones increased to only one sixth of what was observed after the initial GnRHa injection treatment. This increase in LH and FSH was observed 1 h after GnRHa treatment on each consecutive day of the experiment and were significantly different in the control group (0 h versus 1 h versus 2 h x saline control versus GnRH agonists groups; P < 0.01). During the superovulatory treatment, FSH concentrations peaked at around 0.70 ng.mL-1 in both saline- and GnRHa-treated groups on the first day but on the last day of surovulatory treatment, FSH concentrations were higher in GnRHa agonist-treated calves than in the control calves (day 11 versus day 12 versus day 13 x saline control versus GnRH agonist treatment groups; P < 0.01). LH profiles were unchanged by surovulatory treatment. Concentrations of oestradiol-17 beta increased significantly over the three days (P < 0.001) of the superovulatory treatments in both groups (P < 0.01). These results indicate that GnRH agonist treatment allows recruited antral follicles to pursue their growth during the early selection process via sustained FSH and LH secretion allowing more than a single large follicle to maintain their growth without going to atresia.  相似文献   

8.
Small-dose, multiple injections of GnRH given to seasonally anoestrous ewes induce final stages of the preovulatory follicle development, but result in an high incidence of defective CL unless animals are primed with progesterone, which completely eliminates luteal dysfunction. Progesterone priming upregulates luteal vascularization; however, its effect on follicular angiogenesis is poorly understood. This study tested the hypothesis that progesterone priming of seasonally anoestrous ewes treated with dose multiple injections of GnRH eliminates defective luteal function by altering the expression of vascular endothelial growth factor (VEGF), VEGF receptor-2, angiopoietin (ANG)-1, ANG-2, and TIE-2 during early and late preovulatory follicle development. Ten seasonally anoestrous ewes were given 20 mg of progesterone im 3 days before the start of GnRH treatment; 10 other animals served as controls. Intravenous injections of 500 ng GnRH were given to all animals every 2 hours for 28 hours, followed at 30 hours with a 300-μg GnRH bolus injection to synchronize the preovulatory LH surge. Ovaries were collected at 24 and 46 hours after the start of GnRH treatment. Small (2–2.5 mm) and large (>2.5 mm) follicles were analyzed for protein and mRNA expression of the angiogenic factors using immunohistochemistry and in situ hybridization assays. Progesterone priming did not have an influence on angiogenic factor levels in small follicles. However, progesterone-primed animals showed significantly (P ≤ 0.05) higher levels of VEGF, VEGFR-2, ANG-1, and ANG-2 in large follicles compared with nonprimed ones. These data suggest that progesterone priming alters the expression of angiogenic factors in large preovulatory follicles, ensuring adequate luteal development and function.  相似文献   

9.
To investigate the effects of prostaglandin (PGF 2alpha) plus GnRH at different stages of the luteal phase 13 ewes received PGF 2alpha on Day 9 of the synchronized cycle, followed 36 h later by GnRH. This control regimen resulted in ovulation and normal corpus luteum (CL) function. In the next cycle, the ewes were treated simultaneously with PGF 2alpha and GnRH either on Day 4 (early, n = 7) or Day 9 (late, n = 6). Ovarian activity was monitored daily by ultrasonography, and blood samples were obtained to monitor hormonal patterns. Size of the largest follicle present when GnRH was administered was similar in all groups, but the preceding growth rate was greatest for the early group. In the 36 h after injection of PGF 2alpha, serum progesterone (P4) had declined to basal levels in the control cycles when GnRH was administered, but P4 concentrations were higher in the early group and were highest in the late group when the GnRH was administered with PGF 2alpha. The LH surges induced by GnRH were highest in the control cycles, and were lower in the 2 treated groups. In the early group, 6 of 7 ewes demonstrated ovulation within 48 h of GnRH, resulting in the formation of normal CL. In the late group, ovulation was delayed for about 5 d in 4 of 6 ewes, and subsequent luteal function was normal; no ovulation was detected in the other 2 ewes of this group, but the follicles became luteinized, resulting in a normal P4 profile in one and subnormal in the other. These results suggest that follicles present during the early luteal phase are capable of ovulating and forming fully functional CL in response to exogenous GnRH. In contrast, follicles present during the late luteal phase fail to ovulate in response to GnRH while P4 levels are high, even though the LH stimulus is adequate; however, these follicles persist and subsequently ovulate after P4 levels have decreased. Therefore, the endocrine milieu to which a follicle was exposed may be more important than its size in determining its ability to undergo ovulation and development into a normal CL.  相似文献   

10.
A surge of LH during the follicular phase triggers multiple pathways, including progesterone and prostaglandin synthesis before culminating in ovulation. Progesterone has been shown to be involved in the ovulatory process in many species. In prepuberal gilts treated with PMSG/hCG the follicular progesterone level has been shown to increase sharply before ovulation. This study was conducted to investigate whether premature elevation of progesterone can accelerate the ovulatory process in Large White PMSG/hCG-treated prepuberal gilts. Fifty-four Large White gilts were treated with 1000 IU, i.m. PMSG to stimulate follicular growth, followed 72 h later by 500 IU, i.m. hCG to induce ovulation. Gilts in the treatment group (n = 27) were given progesterone intermuscularly at 24 and 36 h after hCG. Ovaries were exteriorized to observe ovulation points during laparotomy under general anesthesia at 38 to 50 h after hCG. Ovulation in both groups commenced by 40.05 h after hCG and was completed by 47.71 h in the control group and by 42.87 h after hCG in the treated group. Progesterone shortened (P < 0.01) ovulation time by 4.84 h and the time required (P < 0.01) for the median proportion of follicles to ovulate (40.7 vs 43.5 h after hCG). Progesterone also increased (P < 0.01) the plasma progesterone concentration without altering follicular progesterone concentration.  相似文献   

11.
The effects of estradiol cypionate (ECP) and GnRH injections were tested on mares during January and February. Sixteen mares were blocked on their ovarian status and equally allotted to two groups. Group one received daily injections of 500 μg ECP (im) for 14 days followed by a 21 day period of twice daily injections of 200 μg GnRH (im). Group two received the carrier vehicle.Mean length of diestrus of ovulatory mares was 14.3 ± 1.6 days and 17.8 ± 3.5 days for treated and control groups respectively. Corresponding estrus lengths were 8.0 ± 1.4 days and 6.3 ± 2.1 days. Plasma LH levels, number of follicles < 20 mm, number of follicles > 20 mm and diameter of the largest follicle in ovulatory mares were not significantly affected by treatment with ECP or GnRH.Anovulatory mares treated with ECP and GnRH exhibited estrus more frequently (54% and 70% of the time) than sham injected controls (17% and 15% of the time). Plasma LH levels were significantly elevated (P<.05) in anovulatory mares treated with GnRH. Also more follicles < 20 mm (P<.09) were detected on the ovaries of GnRH treated mares than on those of control mares. Effects of the treatment were transient since LH levels and ovarian activity were similar in both mare groups after cessation of treatment.  相似文献   

12.
Synchronization of emergence of follicular waves in cattle   总被引:1,自引:0,他引:1  
In Experiment 1, heifers were randomly allocated to a control group (saline, im; n = 6) or a GnRH group (100 microg, im; n = 6). Treatment was given approximately 32 h before ovulation. The GnRH treatment shortened (P < 0.001) the time from treatment to emergence of Wave 1 and to the peak concentration of FSH associated with emergence. Administration of GnRH synchronized (less variability, P < 0.01) the time from treatment to ovulation but did not significantly synchronize follicular wave emergence, and tended (P < 0.06) to synchronize the time to the peak concentration of FSH. The mean number of follicles >5 mm per wave was higher (P < 0.01) in the GnRH group (10.7 +/- 1.3) than in the control group (5.7 +/- 0.8). In Experiment 2, either Folltropin (a porcine pituitary extract) was given or the dominant follicle of Wave 1 was aspirated 5 d after ovulation and the following wave (Wave 2) studied. Folltropin and/or aspiration shortened (<0.05) the time from treatment to emergence of Wave 2 and to the peak concentration of FSH associated with wave emergence, and all treatments synchronized (P < 0.01) wave emergence. Retrospective study indicated that the future dominant follicle could have been collected for experimental purposes with a 100% success rate if the following criteria had been used: 1) diameter of largest follicle 10 mm (largest follicle taken), 8 mm (2 largest follicles taken), or 7 mm (3 largest follicles taken); 2) diameter difference between the 2 largest follicles of 4 mm (largest follicle taken), 3 mm (2 largest follicles taken), or 2 mm (3 largest follicles taken); 3) 2 days after wave emergence (2 or 3 largest follicles taken); or 4) 5 days (largest follicle taken), 4 days (2 largest follicles taken), or 3 days (3 largest follicles taken) after treatment (Folltropin or dominant-follicle aspiration).  相似文献   

13.
Ovaries were obtained from naturally cyclic pigs on Days 16-17, 18, 19, 20 and 21 of the oestrous cycle and on the basis of observed follicular characteristics were assigned as representative of the early (Group 1), mid- (Groups 2 and 3) or late (after LH; Group 4) follicular phase. Follicular development in cyclic gilts was compared with that in ovaries obtained from late prepubertal gilts 36 (Group 5) or 72 (Group 6) h after treatment with 750 i.u. PMSG alone, or with a combination of 500 i.u. hCG 72 h after PMSG and slaughter 30-40 h later (Group 7). After dissection of all follicles greater than 2 mm diameter, follicular diameter, follicular fluid volume, follicular fluid concentrations of progesterone, oestradiol and testosterone, and the stage of oocyte maturation were determined. Combined PMSG/hCG treatment of immature gilts resulted in a pattern of follicular development different from that in naturally cyclic gilts during the follicular phase. Overall exogenous gonadotrophin treatment also increased (P less than 0.001) the variability in follicular diameter and fluid volume. Comparisons between appropriate groups also established differences in the variability of both morphological (diameter and volume, Group 1 vs Group 5; P less than 0.05) and biochemical development (follicular fluid oestradiol, Group 3 vs Group 6 and Group 4 vs Group 7; both P less than 0.05). Such differences in both morphological and biochemical characteristics between cyclic and PMSG/hCG-treated gilts were particularly evident in the population of larger (greater than 6 mm) follicles. These results indicate that the pattern of follicular development in naturally cyclic and in PMSG/hCG-treated gilts is dissimilar and suggests that the ovaries of gonadotrophin-treated prepubertal gilts are functionally different from the ovaries of mature females.  相似文献   

14.
Antiserum against gonadotrophin-releasing hormone (GnRH) was infused into one ovary in 4 prepubertal gilts and control porcine serum was infused into one ovary in 4 other gilts. Ovaries were infused for 156 h, after which infused and non-infused ovaries were removed surgically and processed for histology. Infusion of GnRH antibodies did not alter (P greater than 0.10) concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) or oestradiol-17 beta, and GnRH titres in peripheral circulation were low, averaging 1:15. Weights of ovaries not infused were similar (P greater than 0.10) between treatment groups. There were fewer (P less than 0.05) follicles greater than 0.5 mm in diameter in the ovaries infused with GnRH antiserum than in the others, but there were no differences (P greater than 0.10) between treatment groups in the number of follicles less than 0.5 mm in diameter. Infusion of GnRH antibodies increased (P less than 0.05) the incidence of atresia in follicles with greater than 4 layers of granulosa cells compared with the other treatment groups. These results provide evidence that a peptide binding to the GnRH antibodies is involved directly in ovarian follicular development.  相似文献   

15.
The aim of this investigation was to determine the relationship between the morphology of the cumulus-oocyte-complexes (COCs) and the meiotic configuration of oocytes as an LH peak mimicked by hCG. Estrus was synchronized in a total of 29 crossbred Landrace gilts by feeding Regumate for 15 d and administering 1000 IU PMSG. The LH peak was simulated by treatment with 500 IU hCG at 80 h after PMSG. Endoscopic oocyte recovery was carried out 2 h before and 10, 22 and 34 h after hCG. Only macroscopically healthy follicles with a diameter of more than 5 mm were punctured. Altogether, 410 follicles from 57 ovaries were punctured and 251 COCs were aspirated. Oocyte recovery rate increased from 48.5% (P < 0.01) of the early, not yet preovulatory follicles (2 h before hCG) to 80.8% of late preovulatory follicles (34 h after hCG). Cumulus morphology in COCs recovered 2 h before and 10 h after hCG was heterogeneous, with most (72.9 to 57.4%; P < 0.01) showing a compact or slightly expanded cumulus. Starting at about 22 h after hCG, COC morphology changed dramatically (86.7% of COCs with expanded cumulus; P < 0.01), and 34 h after hCG, 98.3% of the COCs had only an expanded cumulus. The percentage of oocytes with a mature meiotic configuration increased (11.2; 7.1; 41.4 and 70.2%, respectively, n = 238 oocytes; P < 0.01) as the interval post hCG increased (-2, 10, 22, 34 h, respectively). Meiotic configuration was related to COC morphology: compact COCs--88.9% diplotene, expanded COCs--53.8% metaphase II (M-II), and denuded oocytes--69.2% degenerated chromatin. These results indicate that there is a relationship between oocyte recovery rate, COC morphology, and meiotic configuration and preovulatory follicle maturation after the application of hCG.  相似文献   

16.
The specific requirement for FSH in the final stages of preovulatory follicle development was assessed in seasonally anoestrous ewes given 2-h injections of GnRH (250 ng/injection), with (N = 10) or without (N = 10) concurrent treatment with bovine follicular fluid (bFF: 2 ml given i.v. at 8-h intervals). Treatment with bFF significantly (P less than 0.01) suppressed plasma FSH concentrations, but, at least for the first 30 h of treatment, did not influence the magnitude of GnRH-induced LH episodes (mean max. conc. 3.00 +/- 0.39 and 3.63 +/- 0.51 ng/ml for bFF-treated and control ewes, respectively). Of 10 animals treated with GnRH for 72 h, 5/5 control ewes showed oestrus and ovulated whereas 0/5 bFF-treated ewes showed oestrus or ovulated in response to GnRH treatment. There was, however, a transient (13.2 +/- 1.0 h) increase in plasma LH concentrations in the ewes given bFF (mean max. conc. 4.64 +/- 1.57 ng/ml), which was coincident with the preovulatory LH surge recorded in animals given GnRH alone. In 10 GnRH-treated ewes slaughtered after 32 h of treatment, the mean diameter of the largest antral follicle was significantly (P less than 0.001) greater in control ewes (5.92 +/- 0.17 mm) than in animals that were also given bFF (3.94 +/- 0.14 mm). In addition, the incidence of atresia in the 3 largest antral follicles present at this time was greater in bFF-treated ewes. These results show that, when plasma FSH concentrations are suppressed by administration of bFF, although the magnitude of GnRH-induced LH episodes is unchanged, preovulatory follicular development is impaired and ovulation does not occur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
FSH is favored over chorionic gonadotropins for induction of estrus in various species, yet little data are available for its effects on follicle development and fertility for use in pigs. For Experiment 1, prepubertal gilts (n = 36) received saline, 100 mg FSH, or FSH with 0.5 mg LH. Treatments were divided into six injections given every 8 h on Days 0 and 1. Proportions of gilts developing medium follicles were increased for FSH and FSH-LH (P < 0.05) compared to saline, but follicles were not sustained and fewer hormone-treated gilts developed large follicles (P < 0.05). No gilts expressed estrus and few ovulated. Experiment 2 tested FSH preparations with greater LH content. Prepubertal gilts (n = 56) received saline, FSH-hCG (100 mg FSH with 200 IU hCG), FSH-LH5 (FSH with 5 mg LH), FSH-LH10 (FSH with 10 mg LH), or FSH-LH20 (FSH with 20 mg LH). FSH-LH was administered as previously described, while 100 IU of hCG was given at 0 h and 24 h. Hormone treated gilts showed increased (P < 0.05) medium and large follicle development, estrus (>70%), ovulation (100%), and ovulation rate (>30 CL) compared to saline. There was an increase (P < 0.05) in the proportion of hormone-treated gilts with follicular cysts at Day 5, but these did not persist to Day 22. These gilts also showed an increase in poorly formed CL (P < 0.05). FSH alone or with small amounts of LH can induce medium follicle growth but greater amounts of LH at the same time is needed to sustain medium follicles, stimulate development of large follicles and induce estrus and ovulation in prepubertal gilts.  相似文献   

18.
The effects of fluorogestone acetate (FGA) and/or pregnant mare serum gonadotrophin (PMSG) on follicular growth and LH secretion in cyclic ewes were determined. Suffolk ewes (n = 40), previously synchronized with cloprostenol were divided into 4 experimental groups (n = 10 ewes per group). Group I served as the control, while groups II, III and IV received FGA, PMSG, FGA and PMSG respectively. Four ewes of each group underwent daily laparascopy for 17 d. All the ovarian follicles >/= 2 mm were measured, and their relative locations were recorded on an ovarian map in order to follow the sequential development of each individual follicle. Comparisons were made of the mean day of emergence and the mean number of small, medium and large follicles, the atresia rate and the ovulation rate. For each group, 3 waves of follicular growth and atresia were observed during the cycle. During luteal phase, FGA treatment accelerated the mechanisms of follicular growth but reduced the number of large follicles and increased the atresia rate. In the follicular phase, FGA treatment was detrimental to both the number of large follicles and the ovulation rate. By contrast, PMSG enhanced recruitment of small follicles and the ovulation rate. Serial blood samples were collected during the luteal and follicular phases to study LH secretion. None of the treatments had any effect on LH secretion patterns.  相似文献   

19.
The hypothesis that ovulation-inducing factor/nerve growth factor (OIF/NGF) isolated from llama seminal plasma exerts a luteotrophic effect was tested by examining changes in circulating concentrations of LH and progesterone, and the vascular perfusion of the ovulatory follicle and developing CL. Female llamas with a growing follicle of 8 mm or greater in diameter were assigned randomly to one of three groups (n = 10 llamas per group) and given a single intramuscular dose of PBS (1 mL), GnRH (50 μg), or purified OIF/NGF (1.0 mg). Cineloops of ultrasonographic images of the ovary containing the dominant follicle were recorded in brightness and power Doppler modalities. Llamas were examined every 4 hours from the day of treatment (Day 0) until ovulation, and every other day thereafter to Day 16. Still frames were extracted from cineloops for computer-assisted analysis of the vascular area of the preovulatory follicle from treatment to ovulation and of the growing and regressing phases of subsequent CL development. Blood samples were collected for the measurement of plasma LH and progesterone concentrations. The diameter of the dominant follicle at the time of treatment did not differ among groups (P = 0.48). No ovulations were detected in the PBS group but were detected in all llamas given GnRH or OIF/NGF (0/10, 10/10, and 10/10, respectively; P < 0.0001). No difference was detected between the GnRH and OIF/NGF groups in the interval from treatment to ovulation (32.0 ± 1.9 and 30.4 ± 5.7 hours, respectively; P = 0.41) or in maximum CL diameter (13.1 ± 0.4 and 13.5 ± 0.3 mm, respectively; P = 0.44). The preovulatory follicle of llamas treated with OIF/NGF had a greater vascular area at 4 hours after treatment than that of the GnRH group (P < 0.001). Similarly, the luteal tissue of llamas treated with purified OIF/NGF had a greater vascular area than that of the GnRH group on Day 6 after treatment (P < 0.001). The preovulatory surge in plasma LH concentration began, and peaked 1 to 2 hours later in the OIF/NGF group than in the GnRH group (P < 0.05). Plasma progesterone concentration was higher on Day 6 in the OIF/NGF group than in the GnRH group (P < 0.001). Results support the hypothesis that OIF/NGF exerts a luteotrophic effect by altering the secretion pattern of LH and enhancing tissue vascularization during the periovulatory period and early stages of CL development.  相似文献   

20.
To study the effect of the dopamine agonist Cabergoline, on ovarian activity in the female dog during pro-estrus and estrus, 6 greyhounds were treated with 5 microg/kg per os of Cabergoline for 20 days beginning on the first day of pro-estrus; 6 animals were left untreated (controls). Ovarian morphology was determined by ultrasound examination once a day during pro-estrus and twice a day during estrus. Follicles were divided into three classes on the basis of their diameter: F1 (<3mm), F2 (3-6mm) and F3 (>6mm). The presence and diameters of post-ovulatory follicles (F-POST) and corpora lutea (CL) were also recorded. Blood samples were taken once a day during pro-estrus and twice a day during estrus. The plasma was assayed for LH, prolactin and progesterone by radioimmunoassay. There were no differences between Cabergoline-treated and control dogs in the duration of pro-estrus or estrus. There was a progressive increase in follicle diameter from the start of pro-estrus when follicles were mainly class F1 to the day of estrus when follicles were mainly class F3. Three days after the start of estrus, the first F-POST follicles were detected. This pattern of development continued and on day 5 the first CLs were detected. By day 9, only CLs were detected. The peak of pre-ovulatory LH was within 3 days of estrus and ovulation was detected in all animals within 3 days of the LH peak. There were no differences in LH concentrations between groups. Plasma prolactin levels varied between animals and were reduced in treated dogs, however, this was not statistically significant (P=0.12). Plasma progesterone levels were below 1.0 ng/ml before the LH surge and thereafter gradually increased. There were no differences in plasma progesterone concentrations between treated and control dogs. In conclusion these results show that the administration of the dopamine agonist Cabergoline during pro-estrus and estrus did not affect the duration of pro-estrus or estrus or the pattern of follicular and luteal development in female dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号