首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By comparison with dicot plant species, relatively little work has been reported on the phosphate transporter (Pht1) gene family from monocot species. Initial studies have shown that barley contains at least eight homologous genes. The promoters of six of these genes were analysed for the presence of regulatory elements potentially associated with expression specificity. In particular, the P1BS-like elements (implicated in phosphorus-regulated expression of genes in plants) was identified in all HvPht1 promoters examined. For two members of the family (HvPht1;1 and HvPht1;2), promoter fusions to beta-glucuronidase and green fluorescent protein reporter genes were constructed, transformed into rice, and the expression profiles observed. The inclusion of an intron derived from Adh1 enhanced gene expression approximately 20-fold, but did not appear to affect the specificity of expression. The HvPht1;1 and HvPht1;2 promoters showed minor differences in expression patterns but, in general, expression was observed at high levels in trichoblast cells (root hairs) and stele of the nodal root, throughout secondary roots, and at a relatively low level in leaf tissues. Under phosphorus deficiency, expression was induced by up to 5-fold. These observations are consistent with a primary role for the encoded genes in the uptake of phosphate by root hairs from soil solution and further current understanding of the mechanisms involved. The promoters also have application for providing a new resource for cereal transformation, ideally suited for driving the expression of foreign genes associated with nutrient uptake.  相似文献   

2.
3.
Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.  相似文献   

4.
5.
6.
7.
8.
Preadipocyte factor-1 (Pref-1) was shown to negatively regulate adipocyte differentiation. We recently reported that ZOG, a rat homolog of Pref-1, was specifically expressed in the adrenal zona glomerulosa. Results of the investigation of Pref-1 expression in preadipocyte and in undifferentiated adrenal cortex suggested that down-regulation of Pref-1 gene was closely correlated with the differentiation process. In this study we demonstrate that an upstream region (from -76 to -47) of the rat Pref-1 gene was essential for its expression in adrenocortical carcinoma-derived H295R cells. A nucleotide sequence found in this region, GCGTGGGCGTGGGCGGGGG (Egr/GC-box), seemed to contain three elements, two early growth response (Egr) elements and one GC-box, overlapping each other. Mutations of four or five nucleotides in a 7-nucleotides-stretch in the midst of the Egr/GC-box eliminated the binding of Sp1/3, abolished the activation by Egr-factor(s) and diminished the Pref-1 promoter activity. When mutations were introduced into the outside of the middle portion, the binding of Sp1/3 to the Egr/GC-box was abolished similarly. However, the decrease in the promoter activity was less than that found with the construct mutated at the middle. These results indicated that an element present at the 7-nucleotides-stretch in the midst of the Egr/GC-box might be important for the Pref-1 promoter activity, and this proximal element was possibly activated by a still-unidentified nuclear factor(s). This element would function as the promoter of the Pref-1 gene in H295R cells, but not in HeLa cells.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号