首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several mechanisms may be associated with Candida albicans resistance to azoles. Ibuprofen was described as being able to revert resistance related to efflux activity in Candida . The aim of this study was to uncover the molecular base of antifungal resistance in C. albicans clinical strains that could be reverted by ibuprofen. Sixty-two clinical isolates and five control strains of C. albicans were studied: the azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute, M27-A2 protocol and minimal inhibitory concentration values were recalculated with ibuprofen (100 μg mL−1); synergistic studies between fluconazole and FK506, a Cdr1p inhibitor, were performed using an agar disk diffusion assay and were compared with ibuprofen results. Gene expression was quantified by real-time PCR, with and without ibuprofen, regarding CDR1 , CDR2 , MDR1 , encoding for efflux pumps, and ERG11 , encoding for azole target protein. A correlation between susceptibility phenotype and resistance gene expression profiles was determined. Ibuprofen and FK506 showed a clear synergistic effect when combined with fluconazole. Resistant isolates reverting to susceptible after incubation with ibuprofen showed CDR1 and CDR2 overexpression especially of the latter. Conversely, strains that did not revert displayed a remarkable increase in ERG11 expression along with CDR genes. Ibuprofen did not alter resistance gene expression significantly ( P >0.05), probably acting as a Cdrp blocker.  相似文献   

3.
Elevated expression of the plasma membrane drug efflux pump proteins Cdr1p and Cdr2p was shown to accompany decreased azole susceptibility in Candida albicans clinical isolates. DNA sequence analysis revealed extensive allelic heterozygosity, particularly of CDR2. Cdr2p alleles showed different abilities to transport azoles when individually expressed in Saccharomyces cerevisiae. Loss of heterozygosity, however, did not accompany decreased azole sensitivity in isogenic clinical isolates. Two adjacent non-synonymous single nucleotide polymorphisms (NS-SNPs), G1473A and I1474V in the putative transmembrane (TM) helix 12 of CDR2, were found to be present in six strains including two isogenic pairs. Site-directed mutagenesis showed that the TM-12 NS-SNPs, and principally the G1473A NS-SNP, contributed to functional differences between the proteins encoded by the two Cdr2p alleles in a single strain. Allele-specific PCR revealed that both alleles were equally frequent among 69 clinical isolates and that the majority of isolates (81%) were heterozygous at the G1473A/I1474V locus, a significant (P < 0.001) deviation from the Hardy-Weinberg equilibrium. Phylogenetic analysis by maximum likelihood (Paml) identified 33 codons in CDR2 in which amino acid allelic changes showed a high probability of being selectively advantageous. In contrast, all codons in CDR1 were under purifying selection. Collectively, these results indicate that possession of two functionally different CDR2 alleles in individual strains may confer a selective advantage, but that this is not necessarily due to azole resistance.  相似文献   

4.
Candida albicans is an important human fungal pathogen. Resistance to all major antifungal agents has been observed in clinical isolates of Candida spp. and is a major clinical challenge. The rise and expansion of drug-resistant mutants during exposure to antifungal agents occurs through a process of adaptive evolution, with potentially complex population dynamics. Understanding the population dynamics during the emergence of drug resistance is important for determining the fundamental principles of how fungal pathogens evolve for resistance. While few detailed reports that focus on the population dynamics of C. albicans currently exist, several important features on the population structure and adaptive landscape can be elucidated from existing evolutionary studies in in vivo and in vitro systems.  相似文献   

5.
6.
7.
8.
Overexpression of MDR1 efflux pump is a major mechanism contributing to drug resistance in Candida albicans, the most common human fungal pathogen. To elucidate the regulatory pathway of drug resistance, we have identified a negative regulator of MDR1 and named it Regulator of Efflux Pump 1 (REP1). Overexpression of REP1 in Saccharomyces cerevisiae increased susceptibility to fluconazole. Furthermore, null mutations on REP1 decreased the susceptibility to antifungal drugs in C. albicans resulting from increased expression of MDR1 mRNA. Hence, Rep1p is involved in drug resistance by negatively regulating MDR1 in C. albicans.  相似文献   

9.
Widespread and repeated use of azoles, particularly fluconazole, has led to the rapid development of azole resistance in Candida albicans. Overexpression of CDR1, CDR2, and CaMDR1 has been reported contributing to azole resistance in C. albicans. In this study, hyper-resistant C. albicans mutant, with the above three genes deleted, was obtained by exposure to fluconazole and fluphenezine for 28 passages. Thirty-five differentially expressed genes were identified in the hyper-resistant mutant by microarray analysis; among the 13 up-regulated genes, we successfully constructed the rta2 and ipf14030 null mutants in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1. Using spot dilution assay, we demonstrated that the disruption of RTA2 increased the susceptibility of C. albicans to azoles while the disruption of IPF14030 did not influence the sensitivity of C. albicans to azoles. Meanwhile, we found that ectopic overexpression of RTA2 in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1 conferred resistance to azoles. RTA2 expression was found elevated in clinical azole-resistant isolates of C. albicans. In conclusion, our findings suggest that RTA2 is involved in the development of azole resistance in C. albicans.  相似文献   

10.
11.
For strain improvement of Aspergillus oryzae, development of the transformation system is essential, wherein dominant selectable markers, including drug-resistant genes, are available. However, A. oryzae generally has a relatively high resistance to many antifungal drugs effective against yeasts and other filamentous fungi. In the course of the study, while investigating azole drug resistance in A. oryzae, we isolated a spontaneous mutant that exhibited high resistance to azole fungicides and found that pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter genes were upregulated in the mutant; their overexpression in the wild-type strain increased azole drug resistance. While deletion of the gene designated atrG resulted in increased azole susceptibility, double deletion of atrG and another gene (atrA) resulted in further azole hypersensitivity. Overall, these results indicate that the ABC transporters AtrA and AtrG are involved in azole drug resistance in A. oryzae.  相似文献   

12.
Candida drug resistance protein (Cdr1p) is a major drug efflux protein, which plays a key role in commonly encountered clinical azole resistance in Candida albicans. We have analyzed its sequence in several azole resistant clinical isolates to evaluate the allelic variation within CDR1 gene and to relate it to its functional activity. The sequence analysis revealed 53 single nucleotide polymorphisms (SNPs), out of which six were non-synonymous single nucleotide polymorphisms (NS-SNPs) implying a change in amino acid and were found in two or more than two allelic combinations in different sensitive or resistant isolates. We have identified three new NS-SNPs namely, E948P, T950S, and F1399Y, in isolates wherein F1399Y appeared to be unique and was present in one of the naturally occurring azole resistant isolates obtained from Indian diabetic patients. However, site-directed mutagenesis showed that the residue F1399 in between TMS 11 and TMS 12 does not affect the functionality of Cdr1p. Taken together, our SNPs analyses reveal that unlike human P-gp, the naturally acquired allelic variations are mostly present in non-conserved regions of the protein which do not allow Cdr1p to genetically evolve in a manner, that would allow a change in its functionality to affect substrate recognition, specificity, and drug efflux activity of C. albicans cells.  相似文献   

13.
Candida albicans and C. tropicalis obtained from whole saliva of patients presenting signs of oral candidosis were assayed for quantification of colony forming units, exoenzyme activity (phospholipase and proteinase) and antifungal drug sensitivity (amphotericin B, fluconazole and itraconazole) by the reference method of the Clinical and Laboratory Standards Institute. The number of colony forming units per milliliter varied according to the Candida species involved and whether a single or mixed infection was present. Proteinase activity was observed in both Calbicans and Ctropicalis, but phospholipase activity was noted only in Calbicans. In vitro resistance to antifungals was verified in both species, but Ctropicalis appears to be more resistant to the tested antifungals than Calbicans.  相似文献   

14.
Candida dubliniensis is a pathogenic yeast species that was first identified as a distinct taxon in 1995. Epidemiological studies have shown that C. dubliniensis is prevalent throughout the world and that it is primarily associated with oral carriage and oropharyngeal infections in human immunodeficiency virus (HIV)-infected and acquired immune deficiency syndrome (AIDS) patients. However, unlike Candida albicans, C. dubliniensis is rarely found in the oral microflora of normal healthy individuals and is responsible for as few as 2% of cases of candidemia (compared to approximately 65% for C. albicans). The vast majority of C. dubliniensis isolates identified to date are susceptible to all of the commonly used antifungal agents, however, reduced susceptibility to azole drugs has been observed in clinical isolates and can be readily induced in vitro. The primary mechanism of fluconazole resistance in C. dubliniensis has been shown to be overexpression of the major facilitator efflux pump Mdr1p. It has also been observed that a large number of C. dubliniensis strains express a non-functional truncated form of Cdr1p, and it has been demonstrated that this protein does not play a significant role in fluconazole resistance in the majority of strains examined to date. Data from a limited number of infection models reflect findings from epidemiological studies and suggest that C. dubliniensis is less pathogenic than C. albicans. The reasons for the reduced virulence of C. dubliniensis are not clear as it has been shown that the two species express a similar range of virulence factors. However, although C. dubliniensis produces hyphae, it appears that the conditions and dynamics of induction may differ from those in C. albicans. In addition, C. dubliniensis is less tolerant of environmental stresses such as elevated temperature and NaCl and H(2)O(2) concentration, suggesting that C. albicans may have a competitive advantage when colonising and causing infection in the human body. It is our hypothesis that a genomic comparison between these two closely-related species will help to identify virulence factors responsible for the far greater virulence of C. albicans and possibly identify factors that are specifically implicated in either superficial or systemic candidal infections.  相似文献   

15.
Resistance to azole antifungal drugs in clinical isolates of the human fungal pathogen Candida albicans is often caused by constitutive overexpression of the CDR1 gene, which encodes a multidrug efflux pump of the ABC transporter superfamily. To understand the relevance of a recently identified negative regulatory element (NRE) in the CDR1 promoter for the control of CDR1 expression in the clinical scenario, we investigated the effect of mutation or deletion of the NRE on CDR1 expression in two matched pairs of azole-sensitive and resistant clinical isolates of C. albicans. Expression of GFP or lacZ reporter genes from the wild type CDR1 promoter was much higher in the azole-resistant C. albicans isolates than in the azole-susceptible isolates, reflecting the known differences in CDR1 expression in these strains. Deletion or mutation of the NRE resulted in enhanced reporter gene expression in azole-sensitive strains, but did not further increase the already high CDR1 promoter activity in the azole-resistant strains. In agreement with these findings, electrophoretic mobility shift assays showed a reduced binding to the NRE of nuclear extracts from the resistant C. albicans isolates as compared with extracts from the sensitive isolates. These results demonstrate that the NRE is involved in maintaining CDR1 expression at basal levels and that this repression is overcome in azole-resistant clinical C. albicans isolates, resulting in constitutive CDR1 overexpression and concomitant drug resistance.  相似文献   

16.
17.
An antifungal peptide, MMGP1, was recently identified from marine metagenome. The mechanism of cellular internalization of this peptide in Candida albicans was studied using fluorescein 5–isothiocynate (Sigma, California, USA) labeling followed by fluorescence microscopy and flow cytometry analyses. The peptide could enter C. albicans cells even at 4 °C, where all energy‐dependent transport mechanisms are blocked. In addition, the peptide internalization was not affected by the endocytic inhibitor, sodium azide. The kinetic study has shown that the peptide was initially localized on cell membrane and subsequently internalized into cytosol. The MMGP1 treatment exhibited time‐dependent cytotoxicity in C. albicans as evidenced by SYTOX Green (Molecular Probes Inc., Eugene, Oreg) uptake. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Drug resistance in Candida species has been considerably increased in the last decades. Given the opposition to antifungal agents, toxicity and interactions of the antimicrobial drugs, identifying new antifungal agents seems essential. This study assessed the antifungal effects of nanoparticles (NPs) on the standard strains of Candida albicans and Candida glabrata and determined the expression genes, including ERG3, ERG11 and FKS1. Selenium nanoparticles (Se-NPs) were biosynthesized with a standard strain of C. albicans and approved by several methods including, ultraviolet-visible spectrophotometer, X-ray diffraction technique, Fourier-transform infrared analysis, field-emission scanning electron microscopy and EDX diagram. The antifungal susceptibility testing performed the minimum inhibitory concentrations (MICs) using the CLSI M27-A3 and M27-S4 broth microdilution method. The expression of the desired genes was examined by the real-time PCR assay between untreated and treated by antifungal drugs and Se-NPs. The MICs of itraconazole, amphotericin B and anidulafungin against C. albicans and C. glabrata were 64, 16 and 4 µg ml−1. In comparison, reduced the MIC values for samples treated with Se-NPs to 1 and 0·5 µg ml−1. The results obtained from real-time PCR and analysis of the ∆∆Cq values showed that the expression of ERG3, ERG11 and FKS1 genes was significantly down-regulated in Se-NPs concentrations (P < 0·05). This study's evidence implies biosafety Se-NPs have favourable effects on the reducing expression of ERG3, ERG11 and FKS1 antifungal resistance genes in C. albicans and C. glabrata.  相似文献   

19.
Drug resistance has become a major problem in the treatment of Candida albicans infections. Genome changes, such as aneuploidy, translocations, loss of heterozygosity, or point mutations, are often observed in clinical isolates that have become resistant to antifungal drugs. To determine whether these types of alterations result when DNA repair pathways are eliminated, we constructed yeast strains bearing deletions in six genes involved in mismatch repair (MSH2 and PMS1) or double-strand break repair (MRE11, RAD50, RAD52, and YKU80). We show that the mre11Δ/mre11Δ, rad50Δ/rad50Δ, and rad52Δ/rad52Δ mutants are slow growing and exhibit a wrinkly colony phenotype and that cultures of these mutants contain abundant elongated pseudohypha-like cells. These same mutants are susceptible to hydrogen peroxide, tetrabutyl hydrogen peroxide, UV radiation, camptothecin, ethylmethane sulfonate, and methylmethane sulfonate. The msh2Δ/msh2Δ, pms1Δ/pms1Δ, and yku80Δ/yku80Δ mutants exhibit none of these phenotypes. We observed an increase in genome instability in mre11Δ/mre11Δ and rad50Δ/rad50Δ mutants by using a GAL1/URA3 marker system to monitor the integrity of chromosome 1. We investigated the acquisition of drug resistance in the DNA repair mutants and found that deletion of mre11Δ/mre11Δ, rad50Δ/rad50Δ, or rad52Δ/rad52Δ leads to an increased susceptibility to fluconazole. Interestingly, we also observed an elevated frequency of appearance of drug-resistant colonies for both msh2Δ/msh2Δ and pms1Δ/pms1Δ (MMR mutants) and rad50Δ/rad50Δ (DSBR mutant). Our data demonstrate that defects in double-strand break repair lead to an increase in genome instability, while drug resistance arises more rapidly in C. albicans strains lacking mismatch repair proteins or proteins central to double-strand break repair.  相似文献   

20.
Expression of the alcohol dehydrogenase gene ADH1, which converts ethanol into carcinogenic acetaldehyde, significantly inversely correlated with the expression of CDR1 and CDR2, genes linked to azole resistance in Candida albicans isolated from chronic oral candidosis in autoimmune polyendocrinopathy-candidosis-ectodermal dystrophy (APECED, APS-I) patients. This is a novel link between candidal two-carbon metabolism genes and azole resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号