首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alteration in atmospheric carbon dioxide concentration and other environmental factors are the significant cues of global climate change. Environmental factors affect the most fundamental biological process including photosynthesis and different metabolic pathways. The feeding of the rapidly growing world population is another challenge which imposes pressure to improve productivity and quality of the existing crops. C4 plants are considered the most productive, containing lower photorespiration, and higher water-use & N-assimilation efficiencies, compared to C3 plants. Besides, the C4-photosynthetic genes not only play an important role in carbon assimilation but also modulate abiotic stresses. In this review, fundamental three metabolic processes (C4, C3, and CAM) of carbon dioxide assimilation, the evolution of C4-photosynthetic genes, effect of elevated CO2 on photosynthesis, and overexpression of C4-photosynthetic genes for higher photosynthesis were discussed. Kranz-anatomy is considered an essential prerequisite for the terrestrial C4 carbon assimilation, but single-celled C4 plant species changed this well-established paradigm. C4 plants are insensitive to an elevated CO2 stress condition but performed better under stress conditions. Overexpression of essential C4-photosynthetic genes such as PEPC, PPDK, and NADP-ME in C3 plants like Arabidopsis, tobacco, rice, wheat, and potato not only improved photosynthesis but also provided tolerance to various environmental stresses, especially drought. The review provides useful information for sustainable productivity and yield under elevated CO2 environment, which to be explored further for CO2 assimilation and also abiotic stress tolerance. Additionally, it provides a better understanding to explore C4-photosynthetic gene(s) to cope with global warming and prospective adverse climatic changes.  相似文献   

2.
魏松涛  迟伟  张立新 《植物学报》2008,25(5):516-525
高等植物根据其CO2同化方式的不同, 可分为C3植物、C4植物和CAM植物。由于C4植物特殊的光合作用方式, 其光合能力明显高于C3植物。然而, 大多数农作物都是C3植物。为了改善C3植物的光合能力, 人们试图通过转基因的方法来改造C3作物, 以提高主要农作物如水稻(Oryz a sativa)、小麦(Tri ticum aestivum)和大豆(Glycine max)等的光合生产力, 并在这些方面做了很多有益的尝试。该文主要综述了通过转基因方法改善碳循环能力的一些进展, 并对一些尚需深入研究的问题进行了探讨。  相似文献   

3.
高等植物碳循环基因工程研究进展   总被引:1,自引:0,他引:1  
高等植物根据其CO2同化方式的不同,可分为C3植物、C4植物和CAM植物。由于C4植物特殊的光合作用方式,其光合能力明显高于C3植物。然而,大多数农作物都是C3植物。为了改善C3植物的光合能力,人们试图通过转基因的方法来改造C3作物,以提高主要农作物如水稻(Oryza sativa)、小麦(Triticum aestivum)和大豆(Glycine max)等的光合生产力,并在这些方面做了很多有益的尝试。该文主要综述了通过转基因方法改善碳循环能力的一些进展,并对一些尚需深入研究的问题进行了探讨。  相似文献   

4.
C4 plants such as maize have CO2 concentrating mechanism and higher photosynthetic efficiency than C3 plants, especially under high light intensity, high temperature and drought conditions. In recent years, due to the rapid development of transgenic technique, different transgenic rice plants with high-level expression of C4 genes have been created by the successful introduction of genes encoding the key C4 photosynthetic path enzymes PEPC, PPDK and NADP-ME through agrobacteria-mediated…  相似文献   

5.
The relationship between carbon assimilation and high-level expression of the maize PEPC in PEPC transgenic rice was studied by comparison to that in the untransformed rice, japonica kitaake. Stomatal conductance and photosynthetic rates in PEPC transgenic rice were higher than those of untransformed rice, but the increase of stomatal conductance had no statistical correlation with that of photosynthetic rate. Under high levels of light intensity, the protein contents of PEPC and CA were increased significantly. Therefore the photosynthetic capacity was increased greatly (50%) with atmospheric CO2 supply. While CO2 release in leaf was reduced and the compensation point was lowered correspondingly under CO2 free conditions. Treatment of the rice with the PEPC-specific inhibitor DCDP showed that overexpression of PEPC and enhancement of carbon assimilation were related to the stability of Fv/Fm. Labeling with 14CO2 for 20 s showed more 14C was distributed to C4 primary photosynthate asperate in PEPC transgenic rice, suggesting that there exists a limiting C4 photosynthetic mechanism in leaves. These results suggest that the primitive CO2 concentrating mechanism found in rice could be reproduced through metabolic engineering, and shed light on the physiological basis for transgenic breeding with high photosynthetic efficiency.  相似文献   

6.
Molecular evolution and genetic engineering of C4 photosynthetic enzymes   总被引:16,自引:0,他引:16  
The majority of terrestrial plants, including many important crops such as rice, wheat, soybean, and potato, are classified as C(3) plants that assimilate atmospheric CO(2) directly through the C(3) photosynthetic pathway. C(4) plants, such as maize and sugarcane, evolved from C(3) plants, acquiring the C(4) photosynthetic pathway in addition to the C(3) pathway to achieve high photosynthetic performance and high water- and nitrogen-use efficiencies. Consequently, the transfer of C(4) traits to C(3) plants is one strategy being adopted for improving the photosynthetic performance of C(3) plants. The recent application of recombinant DNA technology has made considerable progress in the molecular engineering of photosynthetic genes in the past ten years. It has deepened understanding of the evolutionary scenario of the C(4) photosynthetic genes. The strategy, based on the evolutionary scenario, has enabled enzymes involved in the C(4) pathway to be expressed at high levels and in desired locations in the leaves of C(3) plants. Although overproduction of a single C(4) enzyme can alter the carbon metabolism of C(3) plants, it does not show any positive effects on photosynthesis. Transgenic C(3) plants overproducing multiple enzymes are now being produced for improving the photosynthetic performance of C(3) plants.  相似文献   

7.
The process of photorespiration diminishes the efficiency of CO(2) assimilation and yield of C(3)-crops such as wheat, rice, soybean or potato, which are important for feeding the growing world population. Photorespiration starts with the competitive inhibition of CO(2) fixation by O(2) at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and can result in a loss of up to 50% of the CO(2) fixed in ambient air. By contrast, C(4) plants, such as maize, sugar cane and Sorghum, possess a CO(2) concentrating mechanism, by which atmospheric CO(2) is bound to C(4)-carbon compounds and shuttled from the mesophyll cells where the prefixation of bicarbonate occurs via phosphoenolpyruvate carboxylase (PEPC) into the gas-tight bundle-sheath cells, where the bound carbon is released again as CO(2) and enters the Calvin cycle. However, the anatomical division into mesophyll and bundle-sheaths cells ("Kranz"-anatomy) appears not to be a prerequisite for the operation of a CO(2) concentrating mechanism. Submerged aquatic macrophytes, for instance, can induce a C(4)-like CO(2) concentrating mechanism in only one cell type when CO(2) becomes limiting. A single cell C(4)-mechanism has also been reported recently for a terrestrial chenopod. For over 10 years researchers in laboratories around the world have attempted to improve photosynthesis and crop yield by introducing a single cell C(4)-cycle in C(3) plants by a transgenic approach. In the meantime, there has been substantial progress in overexpressing the key enzymes of the C(4) cycle in rice, potato, and tobacco. In this review there will be a focus on biochemical and physiological consequences of the overexpression of C(4)-cycle genes in C(3) plants. Bearing in mind that C(4)-cycle enzymes are also present in C(3) plants, the pitfalls encountered when C(3) metabolism is perturbed by the overexpression of individual C(4) genes will also be discussed.  相似文献   

8.
To improve the efficiency of CO(2) fixation in C(3) photosynthesis, C(4)-cycle genes were overexpressed in potato and tobacco plants either individually or in combination. Overexpression of the phosphoenolpyruvate carboxylase (PEPC) gene (ppc) from Corynebacterium glutamicum (cppc) or from potato (stppc, deprived of the phosphorylation site) in potato resulted in a 3-6-fold induction of endogenous cytosolic NADP malic enzyme (ME) and an increase in the activities of NAD-ME (3-fold), NADP isocitrate dehydrogenase (ICDH), pyruvate kinase (PK), NADP glycerate-3-P dehydrogenase (NADP-GAPDH), and PEP phosphatase (PEPP). In double transformants overexpressing cppc and chloroplastic NADP-ME from Flaveria pringlei (fpMe1), cytosolic NADP-ME was less induced and pleiotropic effects were diminished. There were no changes in enzyme pattern in single fpMe1 overexpressors. In cppc overexpressors of tobacco, the increase in endogenous cytosolic NADP-ME activity was small and changes in other enzymes were less pronounced. Determinations of the CO(2) compensation point (Gamma*) as well as temperature and oxygen effects on photosynthesis produced variational data suggesting that the desired decline in photorespiration occurred only under certain experimental conditions. Double transformants of potato (cppc/fpMe1) exhibited the most consistent attenuating effect on photorespiration. In contrast, photorespiration in tobacco plants appeared to be diminished most in single cppc overexpressors rather than in double transformants (cppc/fpMe1). In tobacco, introduction of the PEP carboxykinase (PEPCK) gene from the bacterium Sinorhizobium meliloti (pck) had little effect on photosynthetic parameters in single (pck) and double transformants (cppc/pck). In transgenic potato plants, increased PEPC activities resulted in a decline in UV protectants (flavonoids) in single cppc or stppc transformants, but not in double transformants (cppc/fpMe1). PEP provision to the shikimate pathway inside the plastids, from which flavonoids derive, might be restricted only in single PEPC overexpressors.  相似文献   

9.
Rubisco limits photosynthetic CO(2) fixation because of its low catalytic turnover rate (k(cat)) and competing oxygenase reaction. Previous attempts to improve the catalytic efficiency of Rubisco by genetic engineering have gained little progress. Here we demonstrate that the introduction of the small subunit (RbcS) of high k(cat) Rubisco from the C(4) plant sorghum (Sorghum bicolor) significantly enhances k(cat) of Rubisco in transgenic rice (Oryza sativa). Three independent transgenic lines expressed sorghum RbcS at a high level, accounting for 30%, 44%, and 79% of the total RbcS. Rubisco was likely present as a chimera of sorghum and rice RbcS, and showed 1.32- to 1.50-fold higher k(cat) than in nontransgenic rice. Rubisco from transgenic lines showed a higher K(m) for CO(2) and slightly lower specificity for CO(2) than nontransgenic controls. These results suggest that Rubisco in rice transformed with sorghum RbcS partially acquires the catalytic properties of sorghum Rubisco. Rubisco content in transgenic lines was significantly increased over wild-type levels but Rubisco activation was slightly decreased. The expression of sorghum RbcS did not affect CO(2) assimilation rates under a range of CO(2) partial pressures. The J(max)/V(cmax) ratio was significantly lower in transgenic line compared to the nontransgenic plants. These observations suggest that the capacity of electron transport is not sufficient to support the increased Rubisco capacity in transgenic rice. Although the photosynthetic rate was not enhanced, the strategy presented here opens the way to engineering Rubisco for improvement of photosynthesis and productivity in the future.  相似文献   

10.
Molecular Genetics of Crassulacean Acid Metabolism   总被引:1,自引:0,他引:1       下载免费PDF全文
Most higher plants assimilate atmospheric CO2 through the C3 pathway of photosynthesis using ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, when CO2 availability is reduced by environmental stress conditions, the incomplete discrimination of CO2 over O2 by Rubisco leads to increased photorespiration, a process that reduces the efficiency of C3 photosynthesis. To overcome the wasteful process of photorespiration, approximately 10% of higher plant species have evolved two alternate strategies for photosynthetic CO2 assimilation, C4 photosynthesis and Crassulacean acid metabolism. Both of these biochemical pathways employ a "CO2 pump" to elevate intracellular CO2 concentrations in the vicinity of Rubisco, suppressing photorespiration and therefore improving the competitiveness of these plants under conditions of high light intensity, high temperature, or low water availability. This CO2 pump consists of a primary carboxylating enzyme, phosphoenolpyruvate carboxylase. In C4 plants, this CO2-concentrating mechanism is achieved by the coordination of two carboxylating reactions that are spatially separated into mesophyll and bundle-sheath cell types (for review, see R.T. Furbank, W.C. Taylor [1995] Plant Cell 7: 797-807;M.S.B. Ku, Y. Kano-Murakami, M. Matsuoka [1996] Plant Physiol 111: 949-957). In contrast, Crassulacean acid metabolism plants perform both carboxylation reactions within one cell type, but the two reactions are separated in time. Both pathways involve cell-specific changes in the expression of many genes that are not present in C3 plants.  相似文献   

11.
The limitation to photosynthetic CO2 assimilation in C3 plants in hot, dry environments is dominated by ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco) because CO2 availability is restricted and photorespiration is stimulated. Using a combination of genetic engineering and transgenic technology, three approaches to reduce photorespiration have been taken; two of these focused on increasing the carboxylation efficiency of Rubisco either by reducing the oxygenase reaction directly or by manipulating the Rubisco enzyme by concentrating CO2 in the region of Rubisco through the introduction of enzymes of the C4 pathway. The third approach attempted to reduce photorespiration directly by manipulation of enzymes in this pathway. The progress in each of these areas is discussed, and the most promising approaches are highlighted. Under saturating CO2 conditions, Rubisco did not limit photosynthesis, and limitation shifted to ribulose bisphosphate (RuBP) regeneration capacity of the C3 cycle. Transgenic analysis was used to identify the specific enzymes that may be targets for improving carbon fixation, and the way this may be exploited in the high CO2 future is considered.  相似文献   

12.
13.
开放式空气CO2浓度升高与作物/杂草的竞争关系   总被引:2,自引:2,他引:0  
曾青  朱建国 《应用生态学报》2002,13(10):1339-1343
CO2浓度升高对植物的光合作用、呼吸作用和水分利用等生理过程产生直接影响,进而影响植物的生长繁殖,CO2浓度升高对于具有C3光合途径的植物较具C4光合途径的植物更为有益,由于许多重要的杂草是C4植物,而许多重要的作用是C3植物,CO2浓度升高对杂草/作物的相互关系将有重要影响,本文就全球CO2浓度升高和气候变化对杂草/作物之间竞争关系影响进行综述,同时针对目前研究现状和可持续农业的需要,提出CO2学浓度升高条件下杂草/作物之间竞争关系及未来农田杂草治理方面理论与实践中有待解决的问题。  相似文献   

14.
Climate change and the evolution of C(4) photosynthesis   总被引:2,自引:0,他引:2  
Plants assimilate carbon by one of three photosynthetic pathways, commonly called the C(3), C(4), and CAM pathways. The C(4) photosynthetic pathway, found only among the angiosperms, represents a modification of C(3) metabolism that is most effective at low concentrations of CO(2). Today, C(4) plants are most common in hot, open ecosystems, and it is commonly felt that they evolved under these conditions. However, high light and high temperature, by themselves, are not sufficient to favor the evolution of C(4) photosynthesis at atmospheric CO(2) levels significantly above the current ambient values. A review of evidence suggests that C(4) plants evolved in response to a reduction in atmospheric CO(2) levels that began during the Cretaceous and continued until the Miocene.  相似文献   

15.
Transgenic tobacco plants expressing a cyanobacterial fructose-1,6/sedoheptulose-1,7-bisphosphatase targeted to chloroplasts show enhanced photosynthetic efficiency and growth characteristics under atmospheric conditions (360 p.p.m. CO2). Compared with wild-type tobacco, final dry matter and photosynthetic CO2 fixation of the transgenic plants were 1.5-fold and 1.24-fold higher, respectively. Transgenic tobacco also showed a 1.2-fold increase in initial activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) compared with wild-type plants. Levels of intermediates in the Calvin cycle and the accumulation of carbohydrates were also higher than those in wild-type plants. This is the first report in which expression of a single plastid-targeted enzyme has been shown to improve carbon fixation and growth in transgenic plants.  相似文献   

16.
The Calvin cycle is the initial pathway of photosynthetic carbon fixation, and several of its reaction steps are suggested to exert rate-limiting influence on the growth of higher plants. Plastid fructose 1,6-bisphosphate aldolase (aldolase, EC 4.1.2.13) is one of the nonregulated enzymes comprising the Calvin cycle and is predicted to have the potential to control photosynthetic carbon flux through the cycle. In order to investigate the effect of overexpression of aldolase, this study generated transgenic tobacco (Nicotiana tabacum L. cv Xanthi) expressing Arabidopsis plastid aldolase. Resultant transgenic plants with 1.4-1.9-fold higher aldolase activities than those of wild-type plants showed enhanced growth, culminating in increased biomass, particularly under high CO? concentration (700 ppm) where the increase reached 2.2-fold relative to wild-type plants. This increase was associated with a 1.5-fold elevation of photosynthetic CO? fixation in the transgenic plants. The increased plastid aldolase resulted in a decrease in 3-phosphoglycerate and an increase in ribulose 1,5-bisphosphate and its immediate precursors in the Calvin cycle, but no significant changes in the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) or other major enzymes of carbon assimilation. Taken together, these results suggest that aldolase overexpression stimulates ribulose 1,5-bisphosphate regeneration and promotes CO? fixation. It was concluded that increased photosynthetic rate was responsible for enhanced growth and biomass yields of aldolase-overexpressing plants.  相似文献   

17.
C3 plants including many agronomically important crops exhibit a lower photosynthetic efficiency due to inhibition of photosynthesis by O2 and the associated photorespiration. C4 plants had evolved the C4 pathway to overcome low CO2 and photorespiration. This review first focuses on the generation of a system for high level expression of the C4-specific gene for pyruvate, orthophosphate dikinase (Pdk), one of the key enzyme in C4 photosynthesis. Based on the results with transgenic rice plants, we have demonstrated that the regulatory system controlling thePdk expression in maize is not unique to C4 plants but rice (C3 plant) posses a similar system. Second, we discussed the possibility of the high level expression of maize C4-specific genes in transgenic rice plants. Introduction of the maize intact phosphoenolpyruvate carboxylase gene (Ppc) caused 30–100 fold higher PEPC activities than non-transgenic rice. These results demonstrated that intact C4-type genes are available for high level expression of C4 enzymes in rice plants. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

18.
19.
以转高等植物ALD和TPI基因的鱼腥藻 7120为对象 ,研究了ALD和TPI两个酶表达量对细胞光合固碳效率的影响。考察了初始pH、NaHCO3浓度和CO2浓度对转基因藻和野生藻生长、光合活性及无机碳亲和力的影响。结果表明 ,转基因藻在较高碳源浓度下 ,其生长速率和光合放氧活性比野生藻有显著的提高 ,并且可以比野生藻耐受更高的pH。在含有2%CO2的空气中 ,转基因藻对外源无机碳的亲和力比野生藻提高了4.06倍.  相似文献   

20.
The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by enhancing the capacity of photosynthetic carbon assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号