首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
alpha-Heterocyclic alpha-aminoesters were obtained in good yields by reaction of a glycine cation equivalent and different heterocyclic nucleophiles; diastereoselectivity using a carbohydrate (galactopyranose) as N-protecting group was modest.  相似文献   

2.
A set of α-quaternary 3-chloro-1-hydroxyalkylphosphonates, analogues of fosfomycin and fosfonochlorin, some of which are new compounds, was synthesized. The compounds were screened for bioactivity against several clinical and standard microbial isolates. Some were found to have moderate activity. The activity was higher with phenyl protection of the phosphoryl ester groups and α-phenyl substitution. Compound 11 was as effective or more potent than fosfomycin or chloramphenicol against several Gram-negative bacteria as well as against some Gram-positive ones.  相似文献   

3.
Pelto RB  Pratt RF 《Biochemistry》2010,49(49):10496-10506
O-(1-Carboxy-1-alkyloxycarbonyl) hydroxamates were found to spontaneously decarboxylate in aqueous neutral buffer to form O-(2-hydroxyalkylcarbonyl) hydroxamates. While the former molecules do not react rapidly with serine β-lactamases, the latter are quite good substrates of representative class A and C, but not D, enzymes, and particularly of a class C enzyme. The enzymes catalyze hydrolysis of these compounds to a mixture of the α-hydroxy acid and hydroxamate. Analogous compounds containing aryloxy leaving groups rather that hydroxamates are also substrates. Structure-activity experiments showed that the α-hydroxyl group was required for any substantial substrate activity. Although both d- and l-α-hydroxy acid derivatives were substrates, the former were preferred. The response of the class C activity to pH and to alternative nucleophiles (methanol and d-phenylalanine) suggested that the same active site functional groups participated in catalysis as for classical substrates. Molecular modeling was employed to explore how the α-hydroxy group might interact with the class C β-lactamase active site. Incorporation of the α-hydroxyalkyl moiety into novel inhibitors will be of considerable interest.  相似文献   

4.
5.
A series of α-glutamic acid scaffold based 4-(benzamido)-4-(1,3,4-oxadiazol-2-yl) butanoic acids were designed and synthesized as new ADAMTS inhibitors. The compounds dose-dependently inhibited the enzymatic activities of ADAMTS-4 and ADAMTS-5. One of the most active compound 2h potently inhibited ADAMTS-4 and ADAMTS-5 with IC50 values of 1.2 and 0.8 μM, respectively. These inhibitors may serve as new lead compounds for further development of therapeutics to treat osteoarthritis.  相似文献   

6.
The synthesis of the fully benzylated α- and β-d-glucopyranosyluronic esters of 1-benzyl N-benzyloxycarbonyl-l-aspartic and -glutamic acids and N-(tert-butoxycarbonyl)-l-phenylalanine, followed by hydrogenolysis, afforded the respective anomers of the 1-O-acyl-d-glucopyranuronic acids 2, 7, and 12. Esterification of both anomers of the N-acetylated derivatives of 2 and 7 by diazomethane was accompanied by glycosyl-bond cleavage, and, in the case of the α anomers, with concomitant 1→2 acyl migration to give, after O-acetylation, the 2-O-acyl O-acetyl methyl ester derivatives 5 and 10, respectively. Similarly, 12α yielded methyl 1,3,4-tri-O-acetyl-2-O-[N-(tert-butoxycarbonyl)-l-phenylalanyl]-d-glucopyranuronate and an analogue having a furanurono-6,3-lactone structure. Esterification of the C-5 carboxyl group, in 1-O-acyl-α-d-glucopyranuronic acids by methanol in the presence of the BF3?-MeOH reagent (1–1.5 equiv.) proceeded without acyl migration. By using this procedure, followed by acetylation, the N-acetylated derivative of afforded methyl 2,3,4-tri-O-acetyl-1-O-(1-methyl N-acetyl-l-glutam-5-oyl)-α-d-glucopyranuronate, and 12α gave methyl 2,3,4-tri-O-acetyl-1-O-(N-acetyl-l-phenylalanyl)-α-d-glucopyranuronate; the formation of the latter involved cleavage of the tert-butoxycarbonyl group by BF3, followed by N-acetylation in the next step.  相似文献   

7.
The activities of novel Cbz-N-protected α-aminophosphonic phenyl esters, analogs of leucine (1–15) and phenylalanine (17–29), which are substituted at the phenyl ester rings, as well as of their peptidic derivatives (31–43), were investigated for their inhibitory effects on chymotrypsin and subtilisin. The chemical nature and position of the examined substituents clearly demonstrated a strong structure–activity relationship. Among all synthesized compounds the most potent phosphonic-type inhibitors of subtilisin and chymotrypsin were identified, with k2/Ki values 114,380?M?1s?1 and 307,380?M?1s?1, respectively.  相似文献   

8.
《Biomass》1987,12(4):271-280
Application of a solid-liquid phase transfer technique in low hydrated organic medium makes the synthesis of the corresponding oxiranes possible for the first time. These new molecules, obtained from biomass, can be applied in many different ways in macromolecular chemistry.  相似文献   

9.
A series of thiazole derivatives 121 were prepared, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23 ± 0.03 and 424.41 ± 0.94 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Compound (8) (IC50, 18.23 ± 0.03 μM) and compound (7) (IC50 = 36.75 ± 0.05 μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25 ± 0.12 μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.  相似文献   

10.
Several members of a new family of non-sugar-type α-glycosidase inhibitors, bearing a 5-(p-toluenesulfonylamino)phthalimide moiety and various substituent at the N2 position, were synthesized and their activities were investigated. The newly synthesized compounds displayed different inhibition profile towards yeast α-glycosidase and rat intestinal α-glycosidase. Almost all the compounds had strong inhibitory activities against yeast α-glycosidase. Regarding rat intestinal α-glycosidase, only analogs with N2-aromatic substituents displayed varying degrees of inhibitory activities on rat intestinal maltase and lactase and nearly all compounds showed no inhibition against rat intestinal α-amylase. Structure–activity relationship studies indicated that 5-(p-toluenesulfonylamino)phthalimide moiety is a favorable scaffold to exert the α-glucosidase inhibitory activity and substituents at the N2 position have considerable influence on the efficacy of the inhibition activities.  相似文献   

11.
In search of better α-glucosidase inhibitors, a series of bis-indolylmethane sulfonohydrazides derivatives (1-14) were synthesized and evaluated for their α-glucosidase inhibitory potential. All derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 0.10 ± 0.05 to 5.1 ± 0.05 μM when compared with standard drug acarbose having IC50 value 856.28 ± 3.15 μM. Among the series, analog 7 (0.10 ± 0.05 μM) with tri-chloro substitution on phenyl ring was identified as the most potent inhibitor of α-glucosidase (∼ 8500 times). The structure activity relationship has been also established. Molecular docking studies were also performed to help understand the binding interaction of the most active analogs with receptors. From the docking studies, it was observed that all the active bis-indolylmethane sulfonohydrazides derivatives showed considerable binding interactions within the active site (acarbose inhibition site) of α-glucosidase. We also evaluated toxicity of all derivatives and found none of them are toxic.  相似文献   

12.
A series of 3-aryl-4-isoxazolecarboxamides identified from a high-throughput screening campaign as novel, potent agonists of the human TGR5 G-protein-coupled receptor is described. Many analogues were readily accessible via solution-phase synthesis which resulted in the rapid identification of key structure–activity relationships (SAR), and the discovery of potent exemplars (up to pEC50 = 9). Details of the SAR and optimization of this series are presented herein.  相似文献   

13.
Diabetes is one of the pre-dominant metabolic disorders all over the world. It is the prime reason of mortality and morbidity due to hyperglycemia which is link with numerus obstacles. Delaying absorption and digestion of carbohydrate has great therapeutic impact for governing postprandial hyperglycemia. Consequently, alpha glucosidase is one of the potential therapeutic approaches that reduce absorption of glucose and delay carbohydrate digestion hence maintaining blood glucose level. In this regard we have synthesized benzothiazole based oxadiazole in search of potent anti-diabetic agent as α-glucosidase Inhibitors. Benzothiazole based oxadiazole derivatives 123 have been synthesized, characterized by 1HNMR, 13CNMR, and MS and evaluated for α-glucosidase Inhibition. All analogs exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values ranging in between 0.5 ± 0.01–30.90 ± 0.70 μM when compared with the standard acarbose (IC50 = 866.30 ± 3.20 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.  相似文献   

14.
Biscoumarin analogs 1–18 have been synthesized, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All compounds showed variety of α-glucosidase inhibitory potential ranging in between 13.5 ± 0.39 and 104.62 ± 0.3 μM when compared with standard acarbose having IC50 value 774.5 ± 1.94 μM. The binding interactions of the most active analogs were confirmed through molecular docking. The compounds showed very good interactions with enzyme. All synthesized compounds 1–18 are new. Our synthesized compounds can further be studied to developed lead compounds.  相似文献   

15.
Inhibition of α-glucosidase is an effective strategy for controlling the post-prandial hyperglycemia in diabetic patients. For the identification of new inhibitors of this enzyme, a series of new (R)-1-(2-(4-bromo-2-methoxyphenoxy) propyl)-4-(4-(trifluoromethyl) phenyl)-1H-1,2,3-triazole derivatives were synthesized (8a–d and 10a–e). The structures were confirmed by NMR, mass spectrometry and, in case of compound 8a, by single crystal X-ray crystallography. The α-glucosidase inhibitory activities were investigated in vitro. Most derivatives exhibited significant inhibitory activity against α-glucosidase enzyme. Their structure-activity relationship and molecular docking studies were performed to elucidate the active pharmacophore against this enzyme. Compound 10b was the most active analogue with IC50 value of 14.2 µM, while compound 6 was found to be the least active having 218.1 µM. A preliminary structure-activity relationship suggested that the presence of 1H-1,2,3-triazole ring in 1H-1,2,3-triazole derivatives is responsible for this activity and can be used as anti-diabetic drugs. The molecular docking studies of all active compounds were performed, in order to understand the mode of binding interaction and the energy of this class of compounds.  相似文献   

16.
A series of twenty indole hydrazone analogs (121) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65 μM. Nine compounds that are 1 (2.23 ± 0.01 μM), 8 (2.44 ± 0.12 μM), 10 (1.92 ± 0.12 μM), 12 (2.49 ± 0.17 μM), 13 (1.66 ± 0.09 μM), 17 (2.25 ± 0.1 μM), 18 (1.87 ± 0.25 μM), 20 (1.83 ± 0.63 μM), and 19 (1.97 ± 0.02 μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05 ± 0.29 μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.  相似文献   

17.
In order to clarify the substrate specificity of the α-L-mannosidase activity of naringinase (Sigma), the following disaccharides and phenol glycosides were freshly prepared: methyl 2-O-(α-L-mannopyranosyl)­β-D-glucoside (1), methyl 3-O-(α-L-mannopyranosyl)-α-D-glucoside (2), methyl 4-O-(α-L-mannopyranosyl)-α-D-glucoside (3), methyl 5-O-(α-L-mannopyranosyl)-β-D-glucoside (4), methyl 6-O-(α-L-mannopyranosyl)-α-D­glucoside (5), 6-O-(α-L-mannpyranosyl)-D-galactose (6), p-nitrophenyl α-L-mannoside (7), and 4-methyl umbelliferone α-L-mannoside (8).These compounds, except for 3 and 5, were hydrolyzed with naringinase.  相似文献   

18.
Inclusions of aggregated α-synuclein (α-syn) in dopaminergic neurons are a characteristic histological marker of Parkinson’s disease (PD). In vitro, α-syn in the presence of dopamine (DA) at physiological pH forms SDS-resistant non-amyloidogenic oligomers. We used a combination of biophysical techniques, including sedimentation velocity analysis, small angle X-ray scattering (SAXS) and circular dichroism spectroscopy to study the characteristics of α-syn oligomers formed in the presence of DA. Our SAXS data show that the trimers formed by the action of DA on α-syn consist of overlapping worm-like monomers, with no end-to-end associations. This lack of structure contrasts with the well-established, extensive β-sheet structure of the amyloid fibril form of the protein and its pre-fibrillar oligomers. We propose on the basis of these and earlier data that oxidation of the four methionine residues at the C- and N-terminal ends of α-syn molecules prevents their end-to-end association and stabilises oligomers formed by cross linking with DA-quinone/DA-melanin, which are formed as a result of the redox process, thus inhibiting formation of the β-sheet structure found in other pre-fibrillar forms of α-syn.  相似文献   

19.
A series of N-substituted amide linked triazolyl β-d-glucopyranoside derivatives (4a-l) were synthesized and their in vitro inhibitory activity against yeast α-glucosidase enzyme [EC.3.2.1.20] was assessed. Compounds 4e (IC50 = 156.06 μM), 4f (IC50 = 147.94 μM), 4k (IC50 = 127.71 μM) and 4l (IC50 = 121.33 μM) were identified as the most potent inhibitors for α-glucosidase as compared to acarbose (IC50 = 130.98 μM) under the same in vitro experimental conditions. Kinetic study showed that both 4e and 4f inhibit the enzyme in a competitive manner with p-nitrophenyl α-d-glucopyranoside as substrate. Molecular docking studies of 4e, 4f, 4k and 4l were also carried out using homology model of α-glucosidase to find out the binding modes responsible for the inhibitory activity. This study revealed that the binding affinity of compounds 4e, 4f, 4k and 4l for α-glucosidase were −8.2, −8.6, −8.3 and −8.5 kcal/mol respectively, compared to that of acarbose (−8.9 kcal/mol). The results suggest that the N-substituted amide linked triazole glycoconjugates can reasonably mimic the substrates for the yeast α-glucosidase.  相似文献   

20.
Thiourea derivatives having benzimidazole 117 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker’s yeast α-glucosidase enzyme. Compounds 117 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83 ± 0.66 and 297.99 ± 1.20 μM which are more better than the standard acarbose (IC50 = 774.5 ± 1.94 μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57 ± 0.81 and 35.83 ± 0.66 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号