首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
赵志军 《兽类学报》2012,32(1):33-41
为探讨繁殖经历与哺乳期最大持续能量收支的关系,对连续4 次繁殖的黑线仓鼠哺乳期的能量收支情况进行了测定。结果显示:1)不同繁殖组哺乳高峰期的摄食量、泌乳能量支出(MEO)、胎仔数和胎仔重差异不显著,静止代谢率(RMR)、非颤抖性产热(NST)、褐色脂肪组织(BAT)线粒体细胞色素c 氧化酶(COX)活性、血清甲状腺激素(T3 、T4 )和催乳素水平也无明显变化;2)摄食量与MEO、胎仔重和RMR 呈显著正相关。结果表明,不同繁殖经历的黑线仓鼠主要通过降低产热和增加能量摄入来满足哺乳高峰期的能量需求;哺乳期最大持续代谢率(SusMR)可能受乳腺组织泌乳能力的限制,与“外周限制假说” 的预测一致,不支持“中心限制假说”;SusMR 限制因素和哺乳期能量收支策略可能与繁殖经历无关。  相似文献   

2.
Leptin has been found to be a direct participant in the regulation of both energy intake and energy expenditure in small mammals showing seasonal declines in body mass (M(b)) and fat mass, but its roles in an animal exhibiting seasonally increased thermogenesis and unchanged M(b) remain unclear. Serum leptin levels, energy budget, and thermogenesis were measured in striped hamsters exposed to consecutive decreases in ambient temperatures ranging from 23° to -23°C. Cold-exposed hamsters had significant increases in gross energy intake (GEI), the rate of basal metabolism, nonshivering thermogenesis, and activity of cytochrome c oxidase (COX) in brown adipose tissue (BAT), compared with control hamsters, indicating a cold-induced elevation of thermogenesis. Body mass and fat content were decreased in cold-exposed animals, and serum leptin levels were increased in hamsters exposed to temperatures of -8°C and below in inverse proportion to body fat content. Serum leptin levels were positively correlated with GEI and BAT COX activity in cold-exposed hamsters, but no such relationships were observed in control animals. These findings suggest that cold-exposed hamsters increase food consumption to meet the energy requirements for increased BAT thermogenesis. The increases in serum leptin levels are likely involved in increased thermogenesis in hamsters under cold stress. Cold-exposed hamsters may become leptin resistant, which is associated with impaired regulation of food intake. This new natural model of leptin resistance may also provide insight into the dynamic long-term control of energy homeostasis for animals that do not exhibit seasonal decline in M(b).  相似文献   

3.
能量代谢的适应性调节是小型哺乳动物应对环境季节性变化的主要策略之一。为探讨不同温度下动物在代谢产热能量支出与脂肪累积之间的权衡策略,以成年雄性黑线仓鼠为研究对象开展了3 个实验:实验1 将动物驯化于高脂和低脂食物;实验2 将动物暴露于低温(5℃)和暖温(30℃);实验3 将饲喂高脂食物的动物暴露于低温。以食物平衡法测定摄食量、摄入能和消化率,以开放式氧气分析仪测定代谢产热,以索氏抽提法测定脂肪含量。结果发现,取食高脂食物的黑线仓鼠摄食量显著减少,但脂肪累积显著增加;暖温下摄食量显著减少,但体脂含量显著增加,低温下摄食量显著升高,但体脂含量显著减少;饲喂高脂食物的黑线仓鼠在低温下摄入能显著增加,非颤抖性产热增强,但体脂含量显著降低。结果表明高脂食物对黑线仓鼠体脂累积的影响与环境温度有关,低温诱导脂肪动员,暖温促进脂肪贮存;低温下黑线仓鼠增加能量摄入不能完全补偿用于产热的能量支出,导致脂肪动员增加;暖温下代谢产热降低是脂肪累积的主要因素;与能量摄入相比代谢产热的能量支出在体脂累积的适应性变化中发挥更重要的作用。  相似文献   

4.
能量代谢的生理调节是小型哺乳动物应对不同环境温度的重要策略之一,为探讨暖温下代谢产热在体重和体脂适应性调节中的作用和机理,本研究将雌性黑线仓鼠(Cricetulus barabensis)暴露于暖温(30°C)1个月、3个月和4个月,测定体重、摄入能、代谢产热、体脂含量、褐色脂肪组织(BAT)细胞色素c氧化酶(COX)活性和解偶联蛋1 (UCP1) mRNA表达等。结果显示,暖温对黑线仓鼠体重无显著影响,但使脂肪含量显著增加。与室温组相比(21°C),暖温组消化率显著升高,但摄入能和消化能显著降低;暖温下非颤抖性产热(NST)显著降低,脑、肝脏和心脏COX活性、BAT COX活性和UCP1 mRNA的表达显著下调。结果表明,暖温下降低代谢产热补偿了能量摄入的减少,机体处于正能量平衡状态,是脂肪含量显著增加的主要原因之一。脑、肝脏、心脏和BAT代谢活性降低是代谢产热降低的主要机制,与脂肪累积有关。  相似文献   

5.
After approximately 10 wk of exposure to decreasing day lengths, Siberian hamsters (Phodopus sungorus) begin to display spontaneous torpor bouts several times each week. Torpor is associated with reduced daily energy expenditure and lower food consumption and ameliorates the thermoregulatory challenges of winter. We tested the extent to which the energy savings conferred by daily torpor depend on the presence of an insulative pelage. Female hamsters were housed in a winter day length (8L:16D) at 5 degrees C; daily food intake and torpor characteristics were recorded for 5 wk in shaved (furless) or normal hamsters. Torpor-bout incidence decreased by 62% in furless hamsters, but the duration of individual bouts and the minimum body temperature attained during torpor were unaffected by loss of pelage. Body temperature declined more rapidly during entry into torpor and increased more slowly during arousal from torpor in furless than in control hamsters. Energy savings per torpor bout, assessed by the amount of food consumed on days that included a torpor bout, was substantially greater in normal than in furless hamsters (16.0% vs. 3.3%); this difference likely reflects the increased cost of thermoregulation during torpor, as well as the increased caloric expenditure incurred by furless hamsters during arousal from torpor. An insulative pelage may be a prerequisite for the energetic benefits derived from heterothermy in this species.  相似文献   

6.
Mice lacking acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a key enzyme in triglyceride synthesis, have increased energy expenditure and therefore are resistant to obesity. Because ambient temperature can significantly affect energy expenditure in mice, we undertook these studies to determine the effects of different ambient temperatures on energy expenditure, food intake, and thermoregulation in DGAT1-deficient [Dgat1(-/-)] mice. Dgat1(-/-) mice had increased energy expenditure irrespective of changes in the ambient temperature. Although core temperature was normal, surface temperature was increased in Dgat1(-/-) mice, most likely reflecting an active mechanism to dissipate heat from increased thermogenesis. Dgat1(-/-) mice had increased food intake at baseline, and this hyperphagia became more pronounced upon exposure to cold. When fasted in a cold environment, Dgat1(-/-) mice developed hypothermia, which was associated with hypoglycemia. These results suggest that the hyperphagia in Dgat1(-/-) mice is a secondary mechanism that compensates for the increased utilization of fuel substrates. Our findings offer insights into the mechanisms of hyperphagia and increased energy expenditure in a murine model of obesity resistance.  相似文献   

7.
黑线仓鼠繁殖输出与基础代谢率的关系   总被引:3,自引:1,他引:2  
赵志军 《兽类学报》2011,31(1):69-78
为了解黑线仓鼠繁殖输出与基础代谢率(BMR)的关系,阐明最大持续能量收支(SusMR)的限制水平, 揭示哺乳期能量收支对策,本文测定了哺乳期黑线仓鼠的体重、摄食量、BMR 和身体组成,以及哺乳期的胎仔数、胎仔重和泌乳能量支出(MEO)。结果显示,黑线仓鼠哺乳期体重降低了15.0 ± 0.8% , 摄食量显著增加, 哺乳高峰期平均摄食量为13.9 ± 0.3 g /d, 摄入能为222.1 ± 5.3 kJ/ d, 比哺乳初期增加121% , 比对照组高288% ;哺乳高峰期MEO 为62.4 ± 2.3 kJ/ d, 哺乳末期BMR 为49.7 ± 1.1 kJ/ d; 断乳时平均胎仔数4.7 ± 0.2、窝胎仔重50.5 ±1.6 g; 哺乳末期BMR 比对照组增加48% ,BMR 与消化系统各器官的相关性高于对照组; BMR 与胎仔数、胎仔重、乳腺重量和MEO 显著正相关。结果表明:初次繁殖的黑线仓鼠哺乳期SusMR 限制为4.47 ×BMR, 在自身维持和繁殖输出之间采取了“权衡分配”的原则,通过体重降低以减少BMR 的增加幅度, 从而有利于繁殖输出。  相似文献   

8.
为研究不同温度驯化条件下大绒鼠体重、体温和能量代谢水平的可塑性变化,本实验测定了热驯化(30℃ ;12L∶ 12D)转脱热驯化(5℃ ;12L∶ 12D)和冷驯化(5℃ ;12L∶ 2D) 转脱冷驯化(30℃ ;12L∶ 12D)条件下,大绒鼠体重、体温、能量收支、静止代谢率和非颤抖性产热的变化。结果表明:大绒鼠在热驯化转脱热驯化过程中,随着热驯化时间的延长,大绒鼠体重和体温增加,摄入能、静止代谢率和非颤抖性产热逐渐降低,在28 d 时降到最低;转到脱热驯化条件下,表现出相反的趋势。冷驯化转入脱冷驯化过程中,随着冷驯化时间的延长,大绒鼠的体重和体温降低,摄入能、静止代谢率和非颤抖性产热逐渐升高,28 d 时达到最高;转移到脱冷驯化条件时,表现出相反的趋势。以上结果说明大绒鼠在不同温度驯化条件下,其体重、能量代谢和产热具有可塑性变化,即通过调节体重、体温和能量代谢来适应不同温度变化。  相似文献   

9.
赵志军 《兽类学报》2015,35(4):359-368
  为阐明野生小型哺乳动物哺乳期能量收支对策,深入理解最大持续能量摄入(SusEI)限制的因素和机理,测定了不同环境温度下(21℃、30℃和5℃)与哺育不同胎仔数(自然胎仔数Con、减少Minus和增加胎仔数Plus)的黑线仓鼠哺乳期体重、摄食量、基础代谢率(BMR)、非颤抖性产热(NST),以及褐色脂肪组织(BAT)细胞色素C氧化酶(COX)活性、血清T3、T4和催乳素水平。结果显示,哺乳期体重显著降低,摄食量显著增加,21℃和30℃组间差异不显著。最大持续摄食量约为14g/d,Minus组比Con和Plus组低20.3%和18.6%。温度对摄食量的影响显著,5℃下摄食量达16g/d,比21℃和30℃组高14%(P<0.05)。Con和Minus组胎仔数维持稳定,而Plus组胎仔数显著降低,断乳时Con和Plus组胎仔数差异不显著。Minus组胎仔重显著低于Con和Plus组。断乳时Minus组平均幼体体重比Con和Plus组分别高17.9%和24.9%(P<0.05)。5℃下BMR、NST、COX活性、血清T3、T4和催乳素水平显著高于21℃和30℃,而21℃和30℃组间差异不显著。结果表明:黑线仓鼠SusEI水平为5×BMR,低温下可通过增加能量摄入应对代谢产热的能量支出,在自身维持和繁殖输出之间采取了“权衡分配”的能量学策略,研究结果支持热耗散限制假说,也符合外周限制假说的预测。  相似文献   

10.

Background

To better understand how different ambient temperatures during lactation affect survival of young, we studied patterns of losses of pups in golden hamsters (Mesocricetus auratus) at different ambient temperatures in the laboratory, mimicking temperature conditions in natural habitats. Golden hamsters produce large litters of more than 10 young but are also known to wean fewer pups at the end of lactation than they give birth to. We wanted to know whether temperature affects litter size reductions and whether the underlying causes of pup loss were related to maternal food (gross energy) intake and reproductive performance, such as litter growth. For that, we exposed lactating females to three different ambient temperatures and investigated associations with losses of offspring between birth and weaning.

Results

Overall, around one third of pups per litter disappeared, obviously consumed by the mother. Such litter size reductions were greatest at 30 °C, in particular during the intermediate postnatal period around peak lactation. Furthermore, litter size reductions were generally higher in larger litters. Maternal gross energy intake was highest at 5 °C suggesting that mothers were not limited by milk production and might have been able to raise a higher number of pups until weaning. This was further supported by the fact that the daily increases in litter mass as well as in the individual pup body masses, a proxy of mother’s lactational performance, were lower at higher ambient temperatures.

Conclusions

We suggest that ambient temperatures around the thermoneutral zone and beyond are preventing golden hamster females from producing milk at sufficient rates. Around two thirds of the pups per litter disappeared at high temperature conditions, and their early growth rates were significantly lower than at lower ambient temperatures. It is possible that these losses are due to an intrinsic physiological limitation (imposed by heat dissipation) compromising maternal energy intake and milk production.
  相似文献   

11.
Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in all organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF]. At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT] balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.  相似文献   

12.
为阐明小型哺乳动物被毛的季节性变化及其在能量代谢和体温调节中的作用,测定了季节性驯化,以及不同光周期和温度驯化的黑线仓鼠的被毛重量、体温和能量收支。结果显示: (1)冬季黑线仓鼠的被毛重量和产热显著高于夏季;(2)短光照(8L∶16D)和低温(5℃ ) 对被毛生长的影响不显著; (3)与室温组(21℃ )相比,低温组(5℃ )摄入能、基础代谢率(BMR)、非颤抖性产热(NST) 、褐色脂肪组织细胞色素c 氧化酶活性和热传导率显著增加,而暖温组(30℃ )显著降低; (4)室温和低温下,剃毛导致摄入能、BMR、NST 和热传导率显著增加;结果表明:被毛的作用与环境温度有关,低温下被毛降低了能量需求,增强了动物应对低温环境的适应能力;被毛的适应性变化是独居的野生小型哺乳动物应对环境温度季节性波动的主要适应策略之一,在其能量代谢和体温调节中具有重要作用和意义。  相似文献   

13.
During hibernation at ambient temperatures (T(a)) above 0 degrees C, rodents typically maintain body temperature (T(b)) approximately 1 degrees C above T(a), reduce metabolic rate, and suspend or substantially reduce many physiological functions. We tested the extent to which the presence of an insulative pelage affects hibernation. T(b) was recorded telemetrically in golden-mantled ground squirrels (Spermophilus lateralis) housed at a T(a) of 5 degrees C; food intake and body mass were measured at regular intervals throughout the hibernation season and after the terminal arousal. Animals were subjected to complete removal of the dorsal fur or a control procedure after they had been in hibernation for 3-4 wk. Shaved squirrels continued to hibernate with little or no change in minimum T(b), bout duration, duration of periodic normothermic bouts, and food intake during normothermia. Rates of rewarming from torpor were, however, significantly slower in shaved squirrels, and rates of body mass loss were significantly higher, indicating increased depletion of white adipose energy stores. An insulative pelage evidently conserves energy over the course of the hibernation season by decreasing body heat loss and reducing energy expenditure during periodic arousals from torpor and subsequent intervals of normothermia. This prolongs the hibernation season by several weeks, thereby eliminating the debilitating consequences associated with premature emergence from hibernation.  相似文献   

14.
Sympathetic activity has been assessed by measurements of noradrenaline turnover in brown adipose tissue and in the heart of golden hamsters during pregnancy and lactation. Noradrenaline turnover was not significantly altered in either tissue in pregnant or lactating hamsters, despite the atrophy of brown adipose tissue that occurs during reproduction. This suggests that sympathetic activity and brown adipose tissue thermogenesis are dissociated during pregnancy and lactation in golden hamsters. The results also indicate that the large increase in food intake lactation does not lead to a diet-induced stimulation of the sympathetic nervous system.  相似文献   

15.
Reproduction places severe demands on the energy metabolism in human females. When physical work entails higher energy expenditure, not enough energy will be left for the support of the reproductive processes and temporal suppression of the reproductive function is expected. While energy needed for reproduction may be obtained by increases in energy intake, utilization of fat reserves, or reallocation of energy from basal metabolism, several environmental or physiological constraints render such solutions unlikely. For human ancestors increases in energy intake were limited by availability of food, by labor of food preparation and by metabolic ceilings to energy assimilation. Energy stored as fat may support only a fraction of the requirements for reproduction (especially lactation). Effects of intense physical activity on basal metabolism may also interfere with fat accumulation during pregnancy. Finally, the female physiology may experience demands on increasing the basal metabolism as a consequence of physical activity and, at the same time, on decreasing the basal metabolism, when energy to support the ongoing pregnancy or lactation is inadequate. The resulting metabolic dilemmas could constitute a plausible cause for the occurrence of reproductive suppression in response to physical activity. It is, therefore, likely that allocating enough energy to the reproductive processes during periods when energy expenditure rises may be difficult due to physiological and bioenergetic constraints. Females attempting pregnancy in such conditions may compromise their lifetime reproductive output. A reproductive suppression occurring in low energy availability situations may thus represent an adaptive rather then a pathological response.  相似文献   

16.
Loss of body fat in leptin-treated animals has been attributed to reduced energy intake, increased thermogenesis, and preferential fatty acid oxidation. Leptin does not decrease food intake or body fat in leptin-resistant high-fat (HF)-fed mice, possibly due to a failure of leptin to activate hypothalamic receptors. We measured energy expenditure of male C57BL/6 mice adapted to low-fat (LF) or HF diet and infused them for 13 days with PBS or 10 mug leptin/day from an intraperitoneal mini-osmotic pump to test whether leptin resistance prevented leptin-induced increases in energy expenditure and fatty acid oxidation. There was no effect of low-dose leptin infusions on either of these measures in LF-fed or HF-fed mice, even though LF-fed mice lost body fat. Experiment 2 tested leptin responsiveness in LF-fed and HF-fed mice housed at different temperatures (18 degrees C, 23 degrees C, 27 degrees C), assuming that the cold would increase and the hot environment would inhibit food intake and thermogenesis, which could potentially interfere with leptin action. LF-fed mice housed at 23 degrees C were the only mice that lost body fat during leptin infusion, suggesting that an ability to modify energy expenditure is essential to the maintenance of leptin responsiveness. HF-fed mice in cold or warm environments did not respond to leptin. HF-fed mice in the hot environment were fatter than other HF-fed mice, and, surprisingly, leptin caused a further increase in body fat, demonstrating that the mice were not totally leptin resistant and that partial leptin resistance in a hot environment favors positive energy balance and fat deposition.  相似文献   

17.
Thermogenesis and the energetics of pregnancy and lactation   总被引:2,自引:0,他引:2  
Energy balance studies suggest that the overall efficiency of energy utilization does not increase during pregnancy in rodents, other than as a consequence of "hyperphagia". Diet-induced thermogenesis is not stimulated in response to the increased energy intake of the pregnant animal, the extra intake being retained at the maximum efficiency. Biochemical studies on brown adipose tissue, the main site of adaptive thermogenesis in rodents, are consistent with the energy balance data, at least in rats and mice. However, in hamsters (golden and Djungarian) some atrophy of the tissue is evident during pregnancy. In contrast to pregnancy, the thermogenic activity (mitochondrial GDP binding) and capacity (uncoupling protein content) of brown adipose tissue are substantially reduced during lactation in rats and mice. These changes result from a fall in sympathetic activity in the tissue in lactation. Sympathetic activity and thermogenic capacity are, however, fully restored following weaning of the pups. The functional atrophy of brown adipose tissue during lactation is linked to a substantial saving in maternal energy expenditure, reducing the energy requirements for milk production. The lactating-post-lactating animal provides an excellent example of a physiologically programmed reversible atrophy of brown adipose tissue.  相似文献   

18.
In most mammals, the energetic costs of lactation significantly increase a female's daily energy requirements. Previous research indicates that such energetic costs may be met through changes in increased food consumption ranging from around 35 % to 150 %. In this paper, changes in food intake during lactation are measured in the red panda (Ailurus fulgens), a species of the order Carnivora which possesses a digestive system suited for a carnivorous diet but yet exclusively feeds on bamboo. Four feeding characteristics were studied: duration of feeding bouts, number of bamboo leaves consumed per mouthful, number of bamboo leaves consumed per minute, and interval between mouthfuls of bamboo. In three lactating females, three of four feeding behaviors significantly increased up to 200 % above the rate observed during non-lactation. Males showed no change in feeding behavior during the same reproductive months with identical available foods. Red pandas appear to suffer a more severe energetic cost during lactation (at least with respect to food consumption) than other mammals previously studied. This may relate to their inefficient digestive capacity to process a herbivorous diet of bamboo. The data presented here suggest that general discussions of the relative costs of reproduction and in turn parental investment should include a female's relative digestive efficiency during stressful reproductive periods.  相似文献   

19.
食物资源的不确定性是动物在自然环境中面临的重要挑战之一."代谢率转换"假说认为,动物应对食物短缺的能量学策略在于降低代谢率以减少能量支出.然而在不同环境温度下非冬眠小型哺乳动物应对食物短缺的"代谢率转换"策略,尚不明确.为探究这一问题,将成年雄性黑线仓鼠在低温(5.0℃)、室温(21.0℃)和高温(32.5℃)下断食处...  相似文献   

20.
Despite the suggestion that reduced energy expenditure may be a key contributor to the obesity pandemic, few studies have tested whether acutely reduced energy expenditure is associated with a compensatory reduction in food intake. The homeostatic mechanisms that control food intake and energy expenditure remain controversial and are thought to act over days to weeks. We evaluated food intake in mice using two models of acutely decreased energy expenditure: 1) increasing ambient temperature to thermoneutrality in mice acclimated to standard laboratory temperature or 2) exercise cessation in mice accustomed to wheel running. Increasing ambient temperature (from 21°C to 28°C) rapidly decreased energy expenditure, demonstrating that thermoregulatory energy expenditure contributes to both light cycle (40±1%) and dark cycle energy expenditure (15±3%) at normal ambient temperature (21°C). Reducing thermoregulatory energy expenditure acutely decreased food intake primarily during the light cycle (65±7%), thus conflicting with the delayed compensation model, but did not alter spontaneous activity. Acute exercise cessation decreased energy expenditure only during the dark cycle (14±2% at 21°C; 21±4% at 28°C), while food intake was reduced during the dark cycle (0.9±0.1 g) in mice housed at 28°C, but during the light cycle (0.3±0.1 g) in mice housed at 21°C. Cumulatively, there was a strong correlation between the change in daily energy expenditure and the change in daily food intake (R2 = 0.51, p<0.01). We conclude that acutely decreased energy expenditure decreases food intake suggesting that energy intake is regulated by metabolic signals that respond rapidly and accurately to reduced energy expenditure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号