首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The masticatory motor patterns of three tammar wallabies and two red kangaroos were determined by analyzing the pattern of electromyographic (EMG) activity of the jaw adductors and correlating it with lower jaw movements, as recorded by digital video and videoradiography. Transverse jaw movements were limited by the width of the upper incisal arcade. Molars engaged in food breakdown during two distinct occlusal phases characterized by abrupt changes in the direction of working-side hemimandible movement. Separate orthal (Phase I) and transverse (Phase II) trajectories were observed. The working-side lower jaw initially was drawn laterally by the balancing-side medial pterygoid and then orthally by overlapping activity in the balancing- and working-side temporalis and the balancing-side superficial masseter and medial pterygoid. Transverse movement occurred principally via the working-side medial pterygoid and superficial masseter. This pattern contrasted to that of placental herbivores, which are known to break down food when they move the working-side lower jaw transversely along a relatively longer linear path without changing direction during the power stroke. The placental trajectory results from overlapping activity in the working- and balancing-side adductor muscles, suggesting that macropods and placental herbivores have modified the primitive masticatory motor pattern in different ways.  相似文献   

2.
The masticatory motor patterns of three tammar wallabies and two red kangaroos were determined by analyzing the pattern of electromyographic (EMG) activity of the jaw adductors and correlating it with lower jaw movements, as recorded by digital video and videoradiography. Transverse jaw movements were limited by the width of the upper incisal arcade. Molars engaged in food breakdown during two distinct occlusal phases characterized by abrupt changes in the direction of working-side hemimandible movement. Separate orthal (Phase I) and transverse (Phase II) trajectories were observed. The working-side lower jaw initially was drawn laterally by the balancing-side medial pterygoid and then orthally by overlapping activity in the balancing- and working-side temporalis and the balancing-side superficial masseter and medial pterygoid. Transverse movement occurred principally via the working-side medial pterygoid and superficial masseter. This pattern contrasted to that of placental herbivores, which are known to break down food when they move the working-side lower jaw transversely along a relatively longer linear path without changing direction during the power stroke. The placental trajectory results from overlapping activity in the working- and balancing-side adductor muscles, suggesting that macropods and placental herbivores have modified the primitive masticatory motor pattern in different ways.  相似文献   

3.
Jaw movement and tooth use in recent and fossil primates   总被引:2,自引:0,他引:2  
Masticatory movements and molar wear facets in species of Tupaia, Galago, Saimiri, and Ateles have been examined using cinefluorography and occlusal analysis. The molars have been compared with those of a fossil series: Palenochtha, Pelycodus and Aegyptopithecus. The extant primates are almost identical in their feeding behaviour, the movements and timing of the masticatory cycle. Food is first puncture-crushed where the cycle is elongated, the power stroke attenuated and abrasion facets are produced on the molars. Chewing follows, the movements are more complex, the power stroke has two distinct parts and attrition facets are produced. In the primitive forms (Tupaia, Palenochtha), shearing blades, arranged in series (en echelon) were used to cut the food during the first part (Phase I) of the power stroke as the lower teeth move into centric occlusion. This mechanism has been progressively replaced by a system of blade-ringed compression chambers which cut and compartmentalise the food in Phase I. This is followed by an anteromedially and inferiorly directed movement away from centric occlusion (Phase II) in which the food is ground. In both extant and fossil series there has been a clear trend towards the elongation of Phase II with a corresponding reduction in Phase I. These results suggest that the observed changes in the morphology of the jaw apparatus have probably occurred within the limits set by a pre-existing behavioral pattern.  相似文献   

4.
Notoungulates, litopterns, and astrapotheres are among the most representative mammals of the early Miocene Santacrucian Age. They comprise a diversity of biological types and sizes, from small forms, comparable to rodents, to giants with no analogues in modern faunas. Traditionally, all of them have been considered herbivores; this diversity is reflected in different morphologies of the masticatory apparatus, suggesting a variety of feeding habits. The application of biomechanics to the study of fossil mammals is a good approach to test functional hypotheses. Jaws act as a lever system, with the pivot at the temporomandibular joint, with masticatory muscles providing the input force, whereas the output force is produced by the teeth on food. The moment arms of the lines of action of the muscles can be estimated to analyze relationships between bite force and bite velocity. A morphogeometric approach inspired by Vizcaíno et al. (1998) is applied to estimate muscle moment arms in a static 3D bite model based on three-dimensional landmarks and semilandmarks on crania with mandibles in occlusion. This new 3D geometric method to evaluate jaw mechanics demonstrated its reliability when applied to a control sample of extant mammals that included carnivores, herbivores, and omnivores. Our results indicate that, except for Pachyrukhos, in no Santacrucian ungulate does the masseter muscle have greater mechanical advantage than the temporalis. Among them, notoungulates have a better configuration to develop force on the molar tooth row than litopterns. This indicates a diet richer in tough plant materials for Santacrucian notoungulates (e.g., grass or even bark) than for litopterns (e.g., dicots). This is consistent with recent ecomorphological approaches applied to this fauna. Finally, the approach proposed here proves to be useful for comparing masticatory performance and it is a powerful tool to validate ecomorphological dietary hypotheses in fossil taxa.  相似文献   

5.
6.
Structure and function are reviewed in the masticatory muscles and in the muscles of the lower face and tongue. The enormous strength of jaw closure is in large part due to the pinnated arrangement of the muscle fibres in the masseter. This muscle, like other masticatory muscles, is unusual in that the cell bodies of the muscle spindle afferents lie in the brain stem rather than in an external ganglion; spindles are absent in the lower facial muscles. Although few data are available, the numbers of motor units in the masticatory muscles, and probably in the lower facial muscles also, appear to he much greater than in limb muscles. The motor units in the facial and tongue muscles are largely composed of histochemical type II (‘fast-twitch’) fibres, but in the masticatory muscles there are substantial numbers of fibres intermediate between type I (‘slow twitch’) and type II, and fibre type grouping is present. In comparison with limb muscles, there is little information on ageing changes in oro-facial muscles. The masticatory muscles do, however, show some atrophy and loss of X-ray density, while motor unit twitches are prolonged. Strength is reduced in the tongue and masticatory muscles. It is known that limb muscle properties are largely governed by their innervation, both through the pattern and amount of impulse activity, and the delivery of trophic messengers; the situation for oro-facial muscles is unclear. The structural and functional differences between the two types of muscle indicate the need for conducting ageing studies on the oro-facial muscles, rather than relying on extrapolations from limb muscles.  相似文献   

7.
"Superfast" or masticatory myosin is the molecular motor in the powerful and specialized jaw-closing muscles of carnivores, folivores, and frugivores. This myosin presumably underpins the unusual high force and moderate shortening velocity of muscle fibers expressing it. Here, we report the cloning and sequencing of the cDNA encoding the full-length masticatory myosin heavy chain (MyHC) from cat temporalis muscle. This was obtained by immunoscreening a cDNA expression library and RACE-PCR (rapid amplification of cDNA ends–PCR). Sequence comparisons at the DNA and amino acid levels show that masticatory MyHC has less than 70% homology to known striated MyHCs, compared with 87–96% between other mammalian fast isoforms themselves. Nucleotide substitution rates at the nonsynonymous sites between masticatory MyHC and other mammalian striated MyHCs are considerably higher than between these striated MyHCs themselves. Phylogenetic analysis revealed that masticatory MyHC diverged from invertebrate MyHC before the avian cardiac MyHC subclass and the mammalian fast/developmental and slow/cardiac MyHC subclasses. Masticatory MyHC is thus a distinct new subclass of vertebrate striated myosins. The early divergence from invertebrate MyHC, combined with immunochemical evidence of its expression in reptilian and shark jaw-closing muscles, suggests that masticatory MyHC evolved in early gnathostomes, driven by benefits derived from powerful jaw closure. During the mammalian radiation, some taxa continued to express it, while others adapted to new types of food and eating habits by replacing masticatory MyHC with more appropriate isoforms normally found in limb and cardiac muscles.  相似文献   

8.
Correlations between dental morphology, arch configuration, and jaw movement patterns were quantitatively investigated in 23 ceboid species to elucidate integrative aspects of occlusal functional anatomy in an adaptive and evolutionary context. Differential maxillary-mandibular arch widths are primary in guiding lateral jaw movements. These movements are characterized according to their associated condylar shifts as either predominantly translatory or rotational. Predominantly translatory movements result from peripheral contact relationships between maxillary arches which are considerably wider posteriorly than their opposing mandibular arches. The greatest degree of mandibular movement is in the molar region in functional association with wide “primitive” maxillary molars, narrow mandibular molars, constricted maxillary intercanine widths, and narrow maxillary incisors. In contrast, predominantly rotational masticatory jaw movements result from differential arch widths which are greatest in the maxillary canine and incisor regions. Here most jaw movement is in the anterior segment and this is reflected in small maxillary-mandibular molar width differences, a high degree of premolarization, wide-set maxillary canine teeth, and wide maxillary incisors. Possible selectional factors in the putative evolution of rotational predominance in mastication from the more primitive translatory pattern are discussed.  相似文献   

9.
Current experimental research on mammalian limb muscle structureand function is compared to that on mammalian jaw muscles. Twomajor areas of comparison are stressed: structural and functional.Comparisons of limbs and jaws are made from the point of viewof the impact of recent studies on simple mechanical modelsof limb/jaw muscle function. Limb muscle structure is comparedto jaw muscles at the level of muscle architecture, muscle histochemicaland motor unit properties, and the organization of motor unitsinto neuromuscular compartments. Such comparisons reveal thatalthough limb muscles and jaw muscles might be organized insimilar ways, fundamental differences exist, both in terms ofmuscle structure and the functional conclusions which have beenbased on studies of muscle structure. The comparisons also demonstratethat much recent evidence from structural studies have had littledirect impact on simple models of muscle function but a muchlarger influence on the assumptions of the models. Comparisonsof limb/jaw muscle function from kinematic and EMG studies,indicate that many masticatory strategies are used by differentmammals but the basic problems of posture and locomotion havebeen met with essentially similar solutions, even among diversemammalian groups. The results of such comparisons demonstratethat both limb and jaw muscle function are sufficiently complexthat new or re-vitalized models are needed if the relationshipbetween structure and function are ever to be understood.  相似文献   

10.
The tree sloths, Bradypus and Choloepus, show unusual masticatory specializations, compared to each other and to other mammals. Both have an incomplete zygomatic arch with descending jugal process, a complex superficial masseter, a large temporalis and medial pterygoid musculature, and a lateral pterygoid with two heads. In Choloepus the deep masseter and zygomaticomandibularis are typical when compared to other mammals. However, in Bradypus there is an ascending jugal process from which enlarged and vertically oriented deep masseter and zygomaticomandibularis muscles originate. Although both sloths are folivores, the anterior teeth in Choloepus are caniniform, while those of Bradypus have lost such elongation. In both sloths the glenoid cavity is similarly located; however, in Bradypus the craniomandibular joint is raised above the occlusal plane, and the pterygoid flanges are elongated. Prediction of the evolutionary sequence of cranial changes from Choloepus-like (primitive) to Bradypus-like (derived) morphology is based upon the most parsimonious model of masseter-medial pterygoid complex changes for masticatory efficiency improvement. The model proposes that the condylar neck in Bradypus was elongated and that this single change predicated a series of other structural changes. Mandibular movement patterns in both sloths showed anteromedially directed unilateral power strokes as in other mammals. Puncture-crushing, tooth-sharpening, and chewing cycles are distinct in Choloepus, less so in Bradypus. The masticatory rate is slow in sloths compared to other mammals of similar body size, averaging 590 ms per cycle for Choloepus and 510 ms for Bradypus.  相似文献   

11.
Subungulate hyraces are similar to the condition assumed to have characterized primitive ungulates and subungulates by virtue of their small body size, relatively unspecialized cranial and postcranial anatomy, and primitive type of lophodont dentition. The muscles of mastication of Procavia habessinica and Heterohyrax brucei are here compared with those of other mammals, both with ungulates, as an example of more specialized mammals, and with opossums, as an example of more generalized mammals, to determine aspects of hyrax myology that represent the retention of a condition primitive for herbivorous mammals. The masticatory muscles of hyraces retain the primitive ungulate/subungulate condition in the large, complexly subdivided temporalis, and in the enlarged, pinnated, bilayered medial pterygoid. The medial pterygoid originates from the pterygoid hamulus, a condition that may also be primitive for this assemblage. The large complex superficial masseter is derived compared with the condition in ruminant artiodactyls, but may represent the condition primitive for perissodactyls. The architectural modifications of this muscle in hyraces may represent adaptations to allow a wide gape threat display. Hyraces possess a posterior belly of the digastric alone, paralleling the condition in some perissodactyls. They possess a large and complexly subdivided styloglossus, which may be a shared derived character of subungulates. Hyraces are unique among ungulates and subungulates in the extreme reduction of the anterior hyoid cornua, and may be unique among mammals in the development of paired lingual processes from the ceratohyal ossifications.  相似文献   

12.
A novel gammaherpesvirus was detected in wild koalas (Phascolarctos cinereus) captured at different locations during 2010. Sequence analysis of the DNA polymerase gene revealed that the virus was genetically distinct from all known gammaherpesviruses. This is the first herpesvirus to be definitively identified in the Vombatiforme suborder (koalas and wombats).  相似文献   

13.
Tree shrews have relatively primitive tribosphenic molars that are apparently similar to those of basal eutherians; thus, these animals have been used as a model to describe mastication in early mammals. In this study the gross morphology of the bony skull, joints, dentition, and muscles of mastication are related to potential jaw movements and cuspal relationships. Potential for complex mandibular movements is indicated by a mobile mandibular symphysis, shallow mandibular fossa that is large compared to its resident condyle, and relatively loose temporomandibular joint ligaments. Abrasive tooth wear is noticeable, and is most marked at the first molars and buccal aspects of the upper cheek teeth distal to P2. Muscle morphology is basically similar to that previously described for Tupaia minor and Ptilocercus lowii. However, in T. glis, an intraorbital part of deep temporalis has the potential for inducing lingual translation of its dentary, and the large medial pterygoid has extended its origin anteriorly to the floor of the orbit, which would enhance protrusion. The importance of the tongue and hyoid muscles during mastication is suggested by broadly expanded anterior bellies of digastrics, which may assist mylohyoids in tensing the floor of the mouth during forceful tongue actions, and by preliminary electromyography, which suggests that masticatory muscles alone cannot fully account for jaw movements in this species.  相似文献   

14.
Mastication is achieved by cooperation among facial, masticatory, and lingual muscles. However, cortical control in cats for the masticatory performance is processed by two systems: facial movement processed by facial SI (the first somatosensory cortex), area C, and area M (motor areas), and jaw and tongue movements performed by intraoral SI, masticatory area, and area P (motor area). In particular, outputs from area P organized in the corticobulbar tract are projected bilaterally in the brainstem. In this present study, the aim is to explore changes in the regional cerebral blood flow (rCBF) in the facial SI, area M, and area P during trained lateral feeding (licking or chewing from the right or left side) of milk, fish paste, and small dry fish. The rCBF in area M showed contralateral dominance, and rCBF in area P during chewing or licking from the right or left side was almost the same value. Furthermore, activities of genioglossus and masseter muscles in the left side showed almost the same values during licking of milk and of fish paste, and chewing of small dry fish during lateral feeding. These findings suggest that the cortical process for facial, jaw, and tongue movements may be regulated by the contralateral dominance of area M and the bilateral one of area P.  相似文献   

15.
The morphology and function of the masticatory apparatus in two armadillos, Dasypus novemcinctus and Euphractus sexcinctus are compared. Euphractus sexcinctus , a species restricted to South America, is omnivorous, eating a wide range of foods, including significant amounts of plant material and carrion. Dasypus novemcinctus is geographically the most widespread of all armadillos, ranging from northern Argentina into the United States. It is insectivorous-omnivorous, apparently consuming whatever it encounters in the leaf litter. In South and Central America, this leads to a diet with a large proportion of ants and termites; in North America, the diet is considerably broadened. The teeth, jaws and jaw musculature of E. sexcinctus are large and the configuration of the jaws maximizes force production. Dasypus novemcinctus possesses derived morphology relative to the primitive condition in armadillos and exhibits many characteristics of ant and termite-eating mammals, including reduced jaw muscles, teeth and facial bones. The apparent morphological specializations for myrmecophagy in D. novemcinctus do not, however, constrain its diet to ants and termites. It is broadly omnivorous, especially in North America. Our data highlight the difficulties in predicting diet from morphological analysis and raise questions concerning the behavioural limits imposed by morphological specialization.  相似文献   

16.
Mastication is achieved by cooperation among facial, masticatory, and lingual muscles. However, cortical control in cats for the masticatory performance is processed by two systems: facial movement processed by facial SI (the first somatosensory cortex), area C, and area M (motor areas), and jaw and tongue movements performed by intraoral SI, masticatory area, and area P (motor area). In particular, outputs from area P organized in the corticobulbar tract are projected bilaterally in the brainstem. In this present study, the aim is to explore changes in the regional cerebral blood flow (rCBF) in the facial SI, area M, and area P during trained lateral feeding (licking or chewing from the right or left side) of milk, fish paste, and small dry fish. The rCBF in area M showed contralateral dominance, and rCBF in area P during chewing or licking from the right or left side was almost the same value. Furthermore, activities of genioglossus and masseter muscles in the left side showed almost the same values during licking of milk and of fish paste, and chewing of small dry fish during lateral feeding. These findings suggest that the cortical process for facial, jaw, and tongue movements may be regulated by the contralateral dominance of area M and the bilateral one of area P.  相似文献   

17.
In the masticatory system, activities of muscles are the main source of force. The daily activity of the jaw muscle is a measure of the total daily loading of the tissues involved. This article gives an overview on the recent assessments of the physiology and ontogeny of the daily use of the jaw muscles. Variations in the characteristics of daily activity could be linked to differences in the types of fibers composing the muscles as well as to the properties of the underlying bone, although these relationships are not absolute. Experimental decrease of the hardness of foods eaten by rats and rabbits showed a significant decrease in the number of daily bursts of feeding. These reductions in daily muscular activity were accompanied by higher mineralization of bone and by a transition toward "faster" fiber types in the muscles. It was revealed in rabbits that the characteristics of the daily activities of muscles (total duration of activity, number and lengths of bursts) were not altered during the transition from suckling to chewing and remained largely unaffected during further postnatal development. These results suggest that, despite large anatomical and functional changes, the average daily load on the jaw muscles by the masticatory system appears to be established before chewing develops and remains largely unchanged all the way through development. Whenever the daily muscular activity changes, this seems to have a significant effect on the properties of the tissues involved.  相似文献   

18.
The actions of masticatory muscles in relation to transverse grinding, associated with forward masticatory movement of the mandible, were investigated by using a mechanical model in the two murid rodents, the Japanese field mouse (Apodemus speciosus: subfamily Murinae) and the gray red-backed vole (Clethrionomys rufocanus: subfamily Arvicolinae). Furthermore, statics of the masticatory system on a sagittal plane while chewing is taking place were also analyzed in these rodents. The inward grinding movements of hemimandibles are generated by the posterior temporalis and internal and external pterygoids in both species. In addition to these muscles, the anterior temporalis also moves the hemimandibles lingually in Apodemus speciosus. The area of origin of the external pterygoid seems more advantageous for transverse grinding in A. speciosus than in Clethrionomys rufocanus. On the basis of the static analysis, the anterodorsal area of origin of the external pterygoid to the upper second and third molars in Clethrionomys rufocanus appears to be an adaptive character to prevent the jaw joints from dislocation during occlusion at a posterior point on the elongated row of cheek teeth.  相似文献   

19.
Beavers are well-known for their ability to fell large trees through gnawing. Yet, despite this impressive behavior, little information exists on their masticatory musculature or the biomechanics of their jaw movements. It was hypothesized that beavers would have a highly efficient arrangement of the masticatory apparatus, and that gnawing efficiency would be maintained at large gape. The head of an American beaver, Castor canadensis, was dissected to reveal the masticatory musculature. Muscle origins and insertions were noted, the muscles were weighed and fiber lengths measured. Physiological cross-sectional areas were determined, and along with the muscle vectors, were used to calculate the length of the muscle moment arms, the maximum incisor bite force, and the proportion of the bite force projected along the long axis of the lower incisor, at occlusion and 30° gape. Compared to other sciuromorph rodents, the American beaver was found to have large superficial masseter and temporalis muscles, but a relatively smaller anterior deep masseter. The incisor bite force calculated for the beaver (550–740 N) was much higher than would be predicted from body mass or incisor dimensions. This is not a result of the mechanical advantage of the muscles, which is lower than most other sciuromorphs, but is likely related to the very high percentage (>96 %) of bite force directed along the lower incisor long axis. The morphology of the skull, mandible and jaw-closing muscles enable the beaver to produce a very effective and efficient bite, which has permitted beavers to become highly successful ecosystem engineers.  相似文献   

20.
The actions of the masticatory muscles of a variety of mammalsin which feeding behavior and the configuration of the masticatoryapparatus differ have been reported. The most common approachused in these studies involves (1) obtaining a good anatomicalperception of the musculature, (2) deriving a theoretical modelof the actions of these muscles during jaw movement, and (3)testing this model by recording muscle activity and jaw movementssimultaneously. A catalogue of the activity patterns in eleven species of mammalsduring food reduction reveals certain trends in the actionsof the masticatory muscles. Horizontal jaw movements are generatedprimarily by differential activities of the deep temporalis,superficial masseter, and medial pterygoid. Vertical movementsand the maintenance of tooth to food contact apparently areproduced by action of the superficial temporalis, deep masseter,and zygomaticomandibularis. Thus, horizontal movements are seeminglygenerated by muscles having fibers arranged in marked anteroposteriordirection, whereas vertical movements are generated by muscleshaving more or less vertically arranged fibers. The asymmetry of jaw movement and the muscular activity generatingit suggest that mastication involves an interactionbetween anunbalanced and flexible functional unit (muscles) and a balancedand stable structural unit (skull and teeth). Thus, any unbalancingof the structural unit results in a further unbalancing of themasticatory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号