首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
Moonlighting--the performance of more than one function by a single protein--is becoming recognized as a common phenomenon with important implications for systems biology and human health. The different functions of a moonlighting protein may use different regions of the protein structure, or alternative structures that occur due to post-translational modifications and/or differences in binding partners. Often the different functions of moonlighting proteins are used at different times or in different places. The existence of moonlighting functions complicates efforts to understand metabolic and regulatory networks, as well as physiological and pathological processes in organisms. Because moonlighting functions can play important roles in disease processes, an improved understanding of moonlighting proteins will provide new opportunities for pharmacological manipulations that specifically target a function involved in pathology while sparing physiologically important functions.  相似文献   

2.
Moonlighting proteins comprise a subset of multifunctional proteins that perform two or more biochemical functions that are not due to gene fusions, multiple splice variants, proteolytic fragments, or promiscuous enzyme activities. The project described herein focuses on a sub-set of moonlighting proteins that have a canonical biochemical function inside the cell and perform a second biochemical function on the cell surface in at least one species. The goal of this project is to consider the biophysical features of these moonlighting proteins to determine whether they have shared characteristics or defining features that might suggest why these particular proteins were adopted for a second function on the cell surface, or if these proteins resemble typical intracellular proteins. The latter might suggest that many other normally intracellular proteins found on the cell surface might also be moonlighting in this fashion. We have identified 30 types of proteins that have different functions inside the cell and on the cell surface. Some of these proteins are found to moonlight on the surface of multiple species, sometimes with different extracellular functions in different species, so there are a total of 98 proteins in the study set. Although a variety of intracellular proteins (enzymes, chaperones, etc.) are observed to be re-used on the cell surface, for the most part, these proteins were found to have physical characteristics typical of intracellular proteins. Many other intracellular proteins have also been found on the surface of bacterial pathogens and other organisms in proteomics experiments. It is quite possible that many of those proteins also have a moonlighting function on the cell surface. The increasing number and variety of known moonlighting proteins suggest that there may be more moonlighting proteins than previously thought, and moonlighting might be a common feature of many more proteins.  相似文献   

3.
Abstract

Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibits multiple functions separate and distinct from its historic role in energy production. Further, it exhibits dynamic changes in its subcellular localization which is an a priori requirement for its multiple activities. Separately, moonlighting GAPDH may function in the pathology of human disease, involved in tumorigenesis, diabetes, and age-related neurodegenerative disorders. It is suggested that moonlighting GAPDH function may be related to specific modifications of its protein structure as well as the formation of GAPDH protein: protein or GAPDH protein: nucleic acid complexes.  相似文献   

4.
兼职功能蛋白(moonlighting proteins)是指一类具有两种或两种以上功能的蛋白,且这些功能间没有直接相关性,此类蛋白能够通过多种形式转换其功能.随着科学研究的深入,越来越多的已知功能的蛋白被发现具有新型兼职功能,其兼职功能对生物体的意义绝不亚于其所谓本职功能.兼职功能蛋白的发现大大拓展了基因、蛋白质与生理功能一一对应的传统观念;特别是最近研究发现一类叫做无固有结构蛋白(intrinsically unstructured proteins,IUPs)表现出多功能性,向"蛋白质的功能等视于确定的三维结构"的经典定律发起了挑战.本文综述了兼职功能蛋白的功能转换机制、进化历程、研究方法等方面的最新研究进展,同时对兼职功能蛋白给生命科学研究带来的新思路和新挑战进行了深入的讨论.  相似文献   

5.
Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated.  相似文献   

6.
7.
Sirover  Michael A. 《Amino acids》2021,53(4):507-515

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a moonlighting protein exhibiting distinct activities apart from its classical role in glycolysis. Regulation of its moonlighting functions and its subcellular localization may be dependent on its posttranslational modification (PTM). The latter include its phosphorylation, which is required for its role in intermembrane trafficking, synaptic transmission and cancer survival; nitrosylation, which is required for its function in apoptosis, heme metabolism and the immune response; acetylation which is necessary for its modulation of apoptotic gene regulation; and N-acetylglucosamine modification which may induce changes in GAPDH oligomeric structure. These findings suggest a structure function relationship between GAPDH posttranslational modification and its diverse moonlighting activities.

  相似文献   

8.
One of the most striking results of the human (and mammalian) genomes is the low number of protein-coding genes. To-date, the main molecular mechanism to increase the number of different protein isoforms and functions is alternative splicing. However, a less-known way to increase the number of protein functions is the existence of multifunctional, multitask, or "moonlighting", proteins. By and large, moonlighting proteins are experimentally disclosed by serendipity. Proteomics is becoming one of the very active areas of biomedical research, which permits researchers to identify previously unseen connections among proteins and pathways. In principle, protein-protein interaction (PPI) databases should contain information on moonlighting proteins and could provide suggestions to further analysis in order to prove the multifunctionality. As far as we know, nobody has verified whether PPI databases actually disclose moonlighting proteins. In the present work we check whether well-established moonlighting proteins present in PPI databases connect with their known partners and, therefore, a careful inspection of these databases could help to suggest their different functions. The results of our research suggest that PPI databases could be a valuable tool to suggest multifunctionality.  相似文献   

9.
The fraction of proteins that retain wild-type function after mutation has long been observed to decline exponentially as the average number of mutations per gene increases. Recently, several groups have used error-prone polymerase chain reactions (PCR) to generate libraries with 15 to 30 mutations per gene, on average, and have reported that orders of magnitude more proteins retain function than would be expected from the low-mutation-rate trend. Proteins with improved or novel function were isolated disproportionately from these high-error-rate libraries, leading to claims that high mutation rates unlock regions of sequence space that are enriched in positively coupled mutations. Here, we show experimentally that error-prone PCR produces a broader non-Poisson distribution of mutations consistent with a detailed model of PCR. As error rates increase, this distribution leads directly to the observed excesses in functional clones. We then show that while very low mutation rates result in many functional sequences, only a small number are unique. By contrast, very high mutation rates produce mostly unique sequences, but few retain function. Thus an optimal mutation rate exists that balances uniqueness and retention of function. Overall, high-error-rate mutagenesis libraries are enriched in improved sequences because they contain more unique, functional clones. Our findings demonstrate how optimal error-prone PCR mutation rates may be calculated, and indicate that "optimal" rates depend on both the protein and the mutagenesis protocol.  相似文献   

10.
Mutations in SMAD tumor suppressor genes are involved in approximately 140,000 new cancers in the USA each year. At this time, how the absence of a functional SMAD protein leads to a tumor is unknown. However, clinical and biochemical studies suggest that all SMAD mutations are loss-of-function mutations. One prediction of this hypothesis is that all SMAD mutations cause tumors via a single mechanism. To test this hypothesis, we expressed five tumor-derived alleles of human SMAD genes and five mutant alleles of Drosophila SMAD genes in flies. We found that all of the DNA-binding domain mutations conferred gain-of-function activity, thereby falsifying the hypothesis. Furthermore, two types of gain-of-function mutation were identified - dominant negative and neomorphic. In numerous assays, the neomorphic allele SMAD4(100T) appears to be capable of activating the expression of WG target genes. These results imply that SMAD4(100T) may induce tumor formation by a fundamentally different mechanism from other SMAD mutations, perhaps via the ectopic expression of WNT target genes - an oncogenic mechanism associated with mutations in Adenomatous Polyposis Coli. Our results are likely to have clinical implications, because gain-of-function mutations may cause tumors when heterozygous, and the life expectancy of individuals with SMAD4(100T) is likely to be different from those with other SMAD mutations. From a larger perspective, our study shows that the genetic characterization of missense mutations, particularly in modular proteins, requires experimental verification.  相似文献   

11.
Heterozygously expressed single-point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2, respectively) render these dimeric enzymes capable of producing the novel metabolite α-hydroxyglutarate (αHG). Accumulation of αHG is used as a biomarker for a number of cancer types, helping to identify tumors with similar IDH mutations. With IDH1, it has been shown that one role of the mutation is to increase the rate of conversion from αKG to αHG. To improve our understanding of the function of this mutation, we have detailed the kinetics of the normal (isocitrate to αKG) and neomorphic (αKG to αHG) reactions, as well as the coupled conversion of isocitrate to αHG. We find that the mutant IDH1 is very efficient in this coupled reaction, with the ability to form αHG from isocitrate and NADP(+). The wild type/wild type IDH1 is also able to catalyze this conversion, though it is much more sensitive to concentrations of isocitrate. This difference in behavior can be attributed to the competitive binding between isocitrate and αKG, which is made more favorable for αKG by the neomorphic mutation at arginine 132. Thus, each partial reaction in the heterodimer is functionally isolated from the other. To test whether there is a cooperative effect resulting from the two subunits being in a dimer, we selectively inactivated each subunit with a secondary mutation in the NADP/H binding site. We observed that the remaining, active subunit was unaffected in its associated activity, reinforcing the notion of each subunit being functionally independent. This was further demonstrated using a monomeric form of IDH from Azotobacter vinelandii, which can be shown to gain the same neomorphic reaction when a homologous mutation is introduced into that protein.  相似文献   

12.
Leber's hereditary optic neuropathy (LHON) is a maternally transmitted form of blindness caused by mitochondrial DNA (mtDNA) mutations. Approximately 90% of LHON cases are caused by 3460A, 11778A, or 14484C mtDNA mutations. These are designated "primary" mutations because they impart a high risk for LHON expression. Although the 11778A and 14484C mutations unequivocally predispose carriers to LHON, they are preferentially associated with mtDNA haplogroup J, one of nine Western Eurasian mtDNA lineages, suggesting a synergistic and deleterious interaction between these LHON mutations and haplogroup J polymorphism(s). We report here the characterization of a new primary LHON mutation in the mtDNA ND4L gene at nucleotide pair 10663. The homoplasmic 10663C mutation has been found in three independent LHON patients who lack a known primary mutation and all of which belong to haplogroup J. This mutation has not been found in a large number of haplotype-matched or non-haplogroup-J control mtDNAs. Phylogenetic analysis with primarily complete mtDNA sequence data demonstrates that the 10663C mutation has arisen at least three independent times in haplogroup J, indicating that it is not a rare lineage-specific polymorphism. Analysis of complex I function in patient lymphoblasts and transmitochondrial cybrids has revealed a partial complex I defect similar in magnitude to the 14484C mutation. Thus, the 10663C mutation appears to be a new primary LHON mutation that is pathogenic when co-occurring with haplogroup J. These results strongly support a role for haplogroup J in the expression of certain LHON mutations.  相似文献   

13.
Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders in humans, and presents with a variety of clinical symptoms, which are highly variable in expression. The mutation rate for NF1 is high, with as many as half of all cases resulting from new mutations. Although the NF1 gene has been cloned and its cDNA sequence determined, the specific role of the NF1 gene product in contributing to the NF1 phenotype has not been clarified. The characterization of NF1 mutations is one of the first steps in correlating genotype with clinical symptoms of the disease. In this paper we describe two independent mutations in exon 31 of the NF1 gene identified following polymerase chain reaction (PCR) amplification, heteroduplexing, and single strand conformational polymorphism (SSCP) analysis. One is a novel insertion that segregates with the disease phenotype in that particular family (5852insTT), while the other is a further example of the sporadic, recurrent CT mutation previously described in the literature (C5842T). The relationship between these mutations and clinical features of NF1 presented by the patients will be discussed.  相似文献   

14.
In the cell, expression levels, allosteric modulators, post‐translational modifications, sequestration, and other factors can affect the level of protein function. For moonlighting proteins, cellular factors like these can also affect the kind of protein function. This minireview discusses examples of moonlighting proteins that illustrate how a single protein can have different functions in different cell types, in different intracellular locations, or under varying cellular conditions. This variability in the kind of protein activity, added to the variability in the amount of protein activity, contributes to the difficulty in predicting the behavior of proteins in the cell.  相似文献   

15.
The disordered Tubulin Polymerization Promoting Protein (TPPP/p25), a prototype of neomorphic moonlighting proteins, displays physiological and pathological functions by interacting with distinct partners. Here the role of the disordered N- and C-termini straddling a middle flexible segment in the distinct functions of TPPP/p25 was established, and the binding motives responsible for its heteroassociations with tubulin and α-synuclein, its physiological and pathological interacting partner, respectively, were identified. We showed that the truncation of the disordered termini altered the folding state of the middle segment and has functional consequences concerning its physiological function. Double truncation diminished its binding to tubulin/microtubules, consequently the tubulin polymerization/microtubule bundling activities of TPPP/p25 were lost highlighting the role of the disordered termini in its physiological function. In contrast, interaction of TPPP/p25 with α-synuclein was not affected by the truncations and its α-synuclein aggregation promoting activity was preserved, showing that the α-synuclein binding motif is localized within the middle segment. The distinct tubulin and α-synuclein binding motives of TPPP/p25 were also demonstrated at the cellular level: the double truncated TPPP/p25 did not align along the microtubules in contrast to the full length form, while it induced α-synuclein aggregation. The localization of the binding motives on TPPP/p25 were established by specific ELISA experiments performed with designed and synthesized peptides: motives at the 178–187 and 147–156 segments are involved in the binding of tubulin and α-synuclein, respectively. The dissimilarity of these binding motives responsible for the neomorphic moonlighting feature of TPPP/p25 has significant innovative impact in anti-Parkinson drug research.  相似文献   

16.
17.
18.
The spinal muscular atrophy (SMA) associated protein survival of motor neuron (SMN) is known to be a moonlighting protein: having one primary, ancestral function (presumed to be involvement in U snRNP assembly) along with one or more secondary functions. One hypothesis for the evolution of moonlighting proteins is that regions of a structure under relatively weak negative selection could gain new functions without interfering with the primary function. To test this hypothesis, we investigated sequence conservation and dN/dS, which reflects the selection acting on a coding sequence, in SMN and a related protein, splicing factor 30 (SPF30), which is not currently known to be multifunctional. We found very different patterns of evolution in the two genes, with SPF30 characterized by strong sequence conservation and negative selection in most animal taxa investigated, and SMN with much lower sequence conservation, and much weaker negative selection at many sites. Evidence was found of positive selection acting on some sites in primate genes for SMN. SMN was also found to have been duplicated in a number of species, and with patterns that indicate reduced negative selection following some of these duplications. There were also several animal species lacking an SMN gene.  相似文献   

19.
20.
Sequence of two alleles responsible for Gaucher disease   总被引:13,自引:0,他引:13  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号