首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global warming and the disruption of plant-pollinator interactions   总被引:3,自引:0,他引:3  
Anthropogenic climate change is widely expected to drive species extinct by hampering individual survival and reproduction, by reducing the amount and accessibility of suitable habitat, or by eliminating other organisms that are essential to the species in question. Less well appreciated is the likelihood that climate change will directly disrupt or eliminate mutually beneficial (mutualistic) ecological interactions between species even before extinctions occur. We explored the potential disruption of a ubiquitous mutualistic interaction of terrestrial habitats, that between plants and their animal pollinators, via climate change. We used a highly resolved empirical network of interactions between 1420 pollinator and 429 plant species to simulate consequences of the phenological shifts that can be expected with a doubling of atmospheric CO2. Depending on model assumptions, phenological shifts reduced the floral resources available to 17–50% of all pollinator species, causing as much as half of the ancestral activity period of the animals to fall at times when no food plants were available. Reduced overlap between plants and pollinators also decreased diet breadth of the pollinators. The predicted result of these disruptions is the extinction of pollinators, plants and their crucial interactions.  相似文献   

2.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

3.
Pollination systems are recognized as critical for the maintenance of biodiversity in terrestrial ecosystems. Therefore, the understanding of mechanisms that promote the integrity of those mutualistic assemblages is an important issue for the conservation of biodiversity and ecosystem function. In this study we present a new population dynamics model for plant–pollinator interactions that is based on the consumer–resource approach and incorporates a few essential features of pollination ecology. The model was used to project the temporal dynamics of three empirical pollination network, in order to analyze how adaptive foraging of pollinators (AF) shapes the outcome of community dynamics in terms of biodiversity and network robustness to species loss. We found that the incorporation of AF into the dynamics of the pollination networks increased the persistence and diversity of its constituent species, and reduced secondary extinctions of both plants and animals. These findings were best explained by the following underlying processes: 1) AF increased the amount of floral resources extracted by specialist pollinators, and 2) AF raised the visitation rates received by specialist plants. We propose that the main mechanism by which AF enhanced those processes is (trophic) niche partitioning among animals, which in turn generates (pollen vector) niche partitioning among plants. Our results suggest that pollination networks can maintain their stability and diversity by the adaptive foraging of generalist pollinators.  相似文献   

4.
Mutualistic interactions between plants and animals promote integration of invasive species into native communities. In turn, the integrated invaders may alter existing patterns of mutualistic interactions. Here we simultaneously map in detail effects of invaders on parameters describing the topology of both plant-pollinator (bi-modal) and plant-plant (uni-modal) networks. We focus on the invader Opuntia spp., a cosmopolitan alien cactus. We compare two island systems: Tenerife (Canary Islands) and Menorca (Balearic Islands). Opuntia was found to modify the number of links between plants and pollinators, and was integrated into the new communities via the most generalist pollinators, but did not affect the general network pattern. The plant uni-modal networks showed disassortative linkage, i.e. species with many links tended to connect to species with few links. Thus, by linking to generalist natives, Opuntia remained peripheral to network topology, and this is probably why native network properties were not affected at least in one of the islands. We conclude that the network analytical approach is indeed a valuable tool to evaluate the effect of invaders on native communities.  相似文献   

5.
Much research debates whether properties of ecological networks such as nestedness and connectance stabilise biological communities while ignoring key behavioural aspects of organisms within these networks. Here, we computationally assess how adaptive foraging (AF) behaviour interacts with network architecture to determine the stability of plant–pollinator networks. We find that AF reverses negative effects of nestedness and positive effects of connectance on the stability of the networks by partitioning the niches among species within guilds. This behaviour enables generalist pollinators to preferentially forage on the most specialised of their plant partners which increases the pollination services to specialist plants and cedes the resources of generalist plants to specialist pollinators. We corroborate these behavioural preferences with intensive field observations of bee foraging. Our results show that incorporating key organismal behaviours with well‐known biological mechanisms such as consumer‐resource interactions into the analysis of ecological networks may greatly improve our understanding of complex ecosystems.  相似文献   

6.
There is a strong trend of declining populations in many species of both animals and plants. Dwindling numbers of species can eventually lead to their functional extinction. Functional, or ecological, extinction occurs when a species becomes too rare to fulfill its ecological, interactive role in the ecosystem, leading to true (numerical) extinction of other depending species. Recent theoretical work on food webs suggests that the frequency of functional extinction might be surprisingly high. However, little is known about the risk of functional species extinctions in networks with other types of interactions than trophic ones. Here, we explore the frequency of functional extinctions in model ecological networks having different proportions of antagonistic and mutualistic links. Furthermore, we investigate the topological relationship between functionally and numerically extinct species. We find that (1) the frequency of functional extinctions is higher in networks containing a mixture of antagonistic and mutualistic interactions than in networks with only one type of interaction, (2) increased mortality rate of species having both mutualistic and antagonistic links is more likely to lead to extinction of another species than to extinction of the species itself compared to species having only mutualistic or antagonistic links, and (3) trophic distance (shortest path) between functionally and numerically extinct species is, on average, longer than one, indicating the importance of indirect effects. These results generalize the findings of an earlier study on food webs, demonstrating the potential importance of functional extinction in a variety of ecological network types.  相似文献   

7.
Climate change can alter species phenologies and therefore disrupt species interactions. Habitat destruction can damage biodiversity and population viability. However, we still know very little about the potential effects of these two factors on the diversity and structure of interaction networks when both act simultaneously. Here we developed a mutualistic metacommunity model to explore the effects of habitat destruction and phenological changes on the diversity and structure of plant–pollinator networks. Using an empirical data set of plant and pollinator interactions and their duration in days, we simulated increasing levels of habitat destruction, under projected scenarios of phenological shifts as well for historically recorded changes in phenologies. On one hand, we found that habitat destruction causes catastrophic collapse in global diversity, as well as inducing alternative states. On the other hand, phenological shifts tend to make interactions weaker, increasing local extinction rates. Together, habitat destruction and phenological changes act synergistically, making metacommunities even more vulnerable to global collapse. Metacommunities are also more vulnerable to collapses under scenarios of historical change, in which phenologies are shortened, not just shifted. Furthermore, connectance and nestedness tends to decrease gradually with habitat destruction before the global collapse. Small phenological shifts can raise connectance slightly, due novel interactions appearing in a few generalist species, but larger shifts always reduce connectance. We conclude that the robustness of mutualistic metacommunities against habitat destruction can be greatly impaired by the weakening of positive interactions that results from the loss of phenological overlap.  相似文献   

8.
Most flowering plants depend on pollinators to reproduce. Thus, evaluating the robustness of plant-pollinator assemblages to species loss is a major concern. How species interaction patterns are related to species sensitivity to partner loss may influence the robustness of plant-pollinator assemblages. In plants, both reproductive dependence on pollinators (breeding system) and dispersal ability may modulate plant sensitivity to pollinator loss. For instance, species with strong dependence (e.g. dioecious species) and low dispersal (e.g. seeds dispersed by gravity) may be the most sensitive to pollinator loss. We compared the interaction patterns of plants differing in dependence on pollinators and dispersal ability in a meta-dataset comprising 192 plant species from 13 plant-pollinator networks. In addition, network robustness was compared under different scenarios representing sequences of plant extinctions associated with plant sensitivity to pollinator loss. Species with different dependence on pollinators and dispersal ability showed similar levels of generalization. Although plants with low dispersal ability interacted with more generalized pollinators, low-dispersal plants with strong dependence on pollinators (i.e. the most sensitive to pollinator loss) interacted with more particular sets of pollinators (i.e. shared a low proportion of pollinators with other plants). Only two assemblages showed lower robustness under the scenario considering plant generalization, dependence on pollinators and dispersal ability than under the scenario where extinction sequences only depended on plant generalization (i.e. where higher generalization level was associated with lower probability of extinction). Overall, our results support the idea that species generalization and network topology may be good predictors of assemblage robustness to species loss, independently of plant dispersal ability and breeding system. In contrast, since ecological specialization among partners may increase the probability of disruption of interactions, the fact that the plants most sensitive to pollinator loss interacted with more particular pollinator assemblages suggest that the persistence of these plants and their pollinators might be highly compromised.  相似文献   

9.
Recent studies have described the architecture of plant–animal mutualistic networks, but little is known on how such networks disassemble as a consequence of global change. This is a relevant question because 1) species interactions seem to be very susceptible to habitat loss, and 2) the loss of a critical fraction of interactions can abruptly change the topology of the entire network with potential consequences for its functioning. Here we develop a spatially explicit metacommunity model based on the structure of 30 real mutualistic networks. We find that there is a critical value of habitat destruction beyond which interactions are lost very fast. Second, there is a homogeneous distribution of the number of interactions per patch when the habitat is pristine, while this becomes very skewed at the brink of extinction. This increase in skewness is discussed in the context of potential indicators of network collapse.  相似文献   

10.
Thousands of plant species worldwide are dependent on birds for pollination. While the ecology and evolution of interactions between specialist nectarivorous birds and the plants they pollinate is relatively well understood, very little is known on pollination by generalist birds. The flower characters of this pollination syndrome are clearly defined but the geographical distribution patterns, habitat preferences and ecological factors driving the evolution of generalist‐bird‐pollinated plant species have never been analysed. Herein I provide an overview, compare the distribution of character states for plants growing on continents with those occurring on oceanic islands and discuss the environmental factors driving the evolution of both groups. The ecological niches of generalist‐bird‐pollinated plant species differ: on continents these plants mainly occur in habitats with pronounced climatic seasonality whereas on islands generalist‐bird‐pollinated plant species mainly occur in evergreen forests. Further, on continents generalist‐bird‐pollinated plant species are mostly shrubs and other large woody species producing numerous flowers with a self‐incompatible reproductive system, while on islands they are mostly small shrubs producing fewer flowers and are self‐compatible. This difference in character states indicates that diverging ecological factors are likely to have driven the evolution of these groups: on continents, plants that evolved generalist bird pollination escape from pollinator groups that tend to maintain self‐pollination by installing feeding territories in single flowering trees or shrubs, such as social bees or specialist nectarivorous birds. This pattern is more pronounced in the New compared to the Old World. By contrast, on islands, plants evolved generalist bird pollination as an adaptation to birds as a reliable pollinator group, a pattern previously known from plants pollinated by specialist nectarivorous birds in tropical mountain ranges. Additionally, I discuss the evolutionary origins of bird pollination systems in comparison to systems involving specialist nectarivorous birds and reconstruct the bird pollination system of Hawaii, which may represent an intermediate between a specialist and generalist bird pollination system. I also discuss the interesting case of Australia, where it is difficult to distinguish between specialist and generalist bird pollination systems.  相似文献   

11.
A literature review of 34 families of flowering plants containing at least one species pollinated primarily by beetles is presented. While the majority of species are represented by magnoliids and basal monocotyledons specialized, beetle-pollinated systems have evolved independently in 14 families of eudicotyldons and six families of petaloid monocots. Four, overlapping modes of floral presentation in plants pollinated exclusively by beetles (Bilabiate, Brush, Chamber Blossom and Painted Bowl) are described. Chamber Blossoms and Painted Bowls are the two most common modes. Chamber Blossoms, found in magnoliids, primitive monocotyledons and in some families of woody eudicots, exploit the greatest diversity of beetle pollinators. Painted Bowls are restricted to petaloid monocots and a few families of eudicots dependent primarily on hairy species of Scarabaeidae as pollen vectors. In contrast, generalist flowers pollinated by a combination of beetles and other animals are recorded in 22 families. Generalist systems are more likely to secrete nectar and exploit four beetle families absent in specialist flowers. Centers of diversity for species with specialized, beetle-pollinated systems are distributed through the wet tropics (centers for Brush and Chamber Blossoms) to warm temperate-Mediterranean zones (centers for Painted Bowls and a few Bilabiate flowers). It is unlikely that beetles were the first pollinators of angiosperms but specialized, beetlepollinated flowers must have evolved by the midlate Cretaceous to join pre-existing guilds of beetlepollinated gymnosperms. The floras of Australia and western North America suggest that mutualistic interactions between beetles and flowers has been a continuous and labile trend in angiosperms with novel interactions evolving through the Tertiary.  相似文献   

12.
The romantic perception of plant–animal mutualisms as a cooperative endeavour has been shattered in the last decades. While the classic theory of plant–pollinator coevolution assumed that partner coevolution is largely mutualistic, an increasing appreciation of the inherent conflict of interests between such partners has led to the realization that genes that confer a reproductive advantage to plants may have negative effects on their pollinators (and vice versa), giving rise to an apparent paradox: that antagonistic processes may drive coevolution among mutualistic partners. Under this new paradigm, mutualistic partners are bound by mutual interest but shaped by “selfish” antagonistic processes. Exploitation barriers mediated by resource competition among pollinators are a key element of this paradigm. Exploitation barriers involve traits such as tubular corollas, red flowers, toxic or deterrent rewards, and attractants of floral predators. Exploitation barriers result in resource partitioning, increasing floral fidelity of favoured pollinators and therefore plant fitness; but they often entail a physiological, behavioural or developmental cost for such favoured pollinators. Resource partitioning mediated by exploitation barriers is a very powerful driver of floral diversification, robust to variation in pollinator assemblages; hence, it may contribute to elucidating the occurrence of co-evolutionary changes in multi-species contexts. Exploitation barriers provide also a mechanistic basis for trait-based modelling of interaction networks, and represent a reason for caution in assuming fixed interaction identity or strength when modelling such networks (e.g. in rarefaction procedures used to estimate secondary extinctions). We propose to replace the misleading metaphor that depicts flowers and pollinators as cooperative partners by a metaphor in which plants and pollinator are traders, seeking to obtain different services from each other in complete disregard for the benefit of their mutualistic partner.  相似文献   

13.
Tolerance of pollination networks to species extinctions   总被引:12,自引:0,他引:12  
Mutually beneficial interactions between flowering plants and animal pollinators represent a critical 'ecosystem service' under threat of anthropogenic extinction. We explored probable patterns of extinction in two large networks of plants and flower visitors by simulating the removal of pollinators and consequent loss of the plants that depend upon them for reproduction. For each network, we removed pollinators at random, systematically from least-linked (most specialized) to most-linked (most generalized), and systematically from most- to least-linked. Plant species diversity declined most rapidly with preferential removal of the most-linked pollinators, but declines were no worse than linear. This relative tolerance to extinction derives from redundancy in pollinators per plant and from nested topology of the networks. Tolerance in pollination networks contrasts with catastrophic declines reported from standard food webs. The discrepancy may be a result of the method used: previous studies removed species from multiple trophic levels based only on their linkage, whereas our preferential removal of pollinators reflects their greater risk of extinction relative to that of plants. In both pollination networks, the most-linked pollinators were bumble-bees and some solitary bees. These animals should receive special attention in efforts to conserve temperate pollination systems.  相似文献   

14.
What are the limitations of models that predict the behavior of an ecological community based on a single type of species interaction? Using plant–pollinator network models as an example, we contrast the predicted vulnerability of a community to secondary extinctions under the assumption of purely mutualistic interactions versus mutualistic and competitive interactions. We find that competition among plant species increases the risk of secondary extinctions and extinction cascades. Simulations over a number of different network structures indicate that this effect is stronger in larger networks, more strongly connected networks and networks with higher plant:pollinator ratios. We conclude that efforts to model plant–pollinator communities will systematically over‐estimate community robustness to species loss if plant competition is ignored. However, because the effect of plant competition depends on network architecture, and because characterization of plant competition is work intensive, we suggest that efforts to account for plant competition in plant–pollinator network models should be focused on large, strongly connected networks with high plant:pollinator ratios.  相似文献   

15.
16.
In the last 15 years, a complex networks perspective has been increasingly used in the robustness assessment of ecological systems. It is therefore crucial to assess the reliability of such tools. Based on the traditional simulation of node (species) removal, mutualistic pollination networks are considered to be relatively robust because of their 1) truncated power‐law degree distribution, 2) redundancy in the number of pollinators per plant and 3) nested interaction pattern. However, species removal is only one of several possible approaches to network robustness assessment. Empirical evidence suggests a decline in abundance prior to the extinction of interacting species, arguing in favour of an interaction removal‐based approach (i.e. interaction disruption), as opposed to traditional species removal. For simulated networks, these two approaches yield radically different conclusions, but no tests are currently available for empirical mutualistic networks. This study compared this new robustness evaluation approach based on interaction extinction versus the traditional species removal approach for 12 alpine and subalpine pollination networks. In comparison with species removal, interaction removal produced higher robustness in the worst‐case extinction scenario but lower robustness in the best‐case extinction scenario. Our results indicate that: 1) these two approaches yield very different conclusions and 2) existing assessments of ecological network robustness could be overly optimistic, at least those based on a disturbance affecting species at random or beginning with the least connected species. Therefore, further empirical study of plant–pollinator interactions in disturbed ecosystems is imperative to understand how pollination networks are disassembled.  相似文献   

17.
Many structural patterns have been found to be important for the stability and robustness of mutualistic plant–pollinator networks. These structural patterns are impacted by a suite of variables, including species traits, species abundances, their spatial configuration, and their phylogenetic history. Here, we consider a specific trait: phenology, or the timing of life history events. We expect that timing and duration of activity of pollinators, or of flowering in plants, could greatly affect the species'' roles within networks in which they are embedded. Using plant–pollinator networks from 33 sites in southern British Columbia, Canada, we asked (a) how phenological species traits, specifically timing of first appearance in the network and duration of activity in a network, were related to species'' roles within a network, and (b) how those traits affected network robustness to phenologically biased species loss. We found that long duration of activity increased connection within modules for both pollinators and plants and among modules for plants. We also found that date of first appearance was positively related to interaction strength asymmetry in plants but negatively related to pollinators. Networks were generally more robust to the loss of pollinators than plants, and robustness increased if the models allow new interactions to form when old ones are lost, constrained by overlapping phenology of plants and pollinators. Robustness declined with the loss of late‐flowering plants, which tended to have higher interaction strength asymmetry. In addition, robustness declined with loss of early‐flying or long‐duration pollinators. These pollinators tended to be among‐module connectors. Our results point to networks being limited by early‐flying pollinators. If plants flower earlier due to climate change, plant fitness may decline as they will depend on early emerging pollinators, unless pollinators also emerge earlier.  相似文献   

18.
Hao D  Li C 《PloS one》2011,6(12):e28322
Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally connected modular network, by which the integrity of network and specificity of modules might be reconciled.  相似文献   

19.

Background

The organization of networks of interacting species, such as plants and animals engaged in mutualisms, strongly influences the ecology and evolution of partner communities. Habitat fragmentation is a globally pervasive form of spatial heterogeneity that could profoundly impact the structure of mutualist networks. This is particularly true for biodiversity-rich tropical ecosystems, where the majority of plant species depend on mutualisms with animals and it is thought that changes in the structure of mutualist networks could lead to cascades of extinctions.

Methodology/Principal Findings

We evaluated effects of fragmentation on mutualistic networks by calculating metrics of network structure for ant-plant networks in continuous Amazonian forests with those in forest fragments. We hypothesized that networks in fragments would have fewer species and higher connectance, but equal nestedness and resilience compared to forest networks. Only one of the nine metrics we compared differed between continuous forest and forest fragments, indicating that networks were resistant to the biotic and abiotic changes that accompany fragmentation. This is partially the result of the loss of only specialist species with one connection that were lost in forest fragments.

Conclusions/Significance

We found that the networks of ant-plant mutualists in twenty-five year old fragments are similar to those in continuous forest, suggesting these interactions are resistant to the detrimental changes associated with habitat fragmentation, at least in landscapes that are a mosaic of fragments, regenerating forests, and pastures. However, ant-plant mutualistic networks may have several properties that may promote their persistence in fragmented landscapes. Proactive identification of key mutualist partners may be necessary to focus conservation efforts on the interactions that insure the integrity of network structure and the ecosystems services networks provide.  相似文献   

20.
Recent research on ecological networks suggests that mutualistic networks are more nested than antagonistic ones and, as a result, they are more robust against chains of extinctions caused by disturbances. We evaluate whether mutualistic networks are more nested than comensalistic and antagonistic networks, and whether highly nested, host-epiphyte comensalistic networks fit the prediction of high robustness against disturbance. A review of 59 networks including mutualistic, antagonistic and comensalistic relationships showed that comensalistic networks are significantly more nested than antagonistic and mutualistic networks, which did not differ between themselves. Epiphyte-host networks from old-growth forests differed from those from disturbed forest in several topological parameters based on both qualitative and quantitative matrices. Network robustness increased with network size, but the slope of this relationship varied with nestedness and connectance. Our results indicate that interaction networks show complex responses to disturbances, which influence their topology and indirectly affect their robustness against species extinctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号