首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

2.
Previous studies have shown that female sedge warblers choose to mate with males that have more complex songs, and sexual selection has driven the evolution of both song complexity and the size of the major song control area (HVc) in the brain. In songbirds, learning from conspecifics plays a major role in song development and this study investigates the effects of isolation and exposure to song on song structure and the underlying song control system. Sibling pairs of hand-reared nestling sedge warblers were reared to sexual maturity under two conditions. Siblings in one group were reared individually in acoustic isolation in separate soundproof chambers. In the other group, siblings were reared together in an aviary with playback of recorded songs. The following spring, analysis of songs revealed that siblings reared in acoustic isolation produced normal song structures, including larger syllable repertoires than those exposed to song. We found no significant differences in the volumes of HVc, nucleus robustus archistnatalis, the lateral portion of the magnocellular nucleus and the density of dendritic spines between the two groups. Males exceeded females in all these measures, and also had a larger telencephalon. Our experiments show that complex song, sexual dimorphism in brain structure, and the size of song nuclei can all develop independently of exposure to song. These findings have important implications for how sexual selection can operate upon a complex male trait such as song and how it may also shape the more general evolution of brain structure in songbirds.  相似文献   

3.
Foellmer MW  Fairbairn DJ 《Oecologia》2005,142(4):653-662
Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The gravity hypothesis states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.  相似文献   

4.
Characteristics of acoustic waves accompanying the flight of noctuid moths (Noctuidae) were measured. The low-frequency part of the spectrum is formed of a series of up to 17 harmonics of the wingbeat frequency (30–50 Hz) with a general tendency toward the decrease in the spectral density and the increase in the sound frequency. The root-mean-square level of the sound pressure from flapping wings was found to be 70–78 dB SPL. Besides low-frequency components, the flight of moths was accompanied by short ultrasonic pulses, which appeared with every wingbeat. Most of the spectral energy was concentrated within a range of 7–150 kHz with the main peaks at 60–110 kHz. The short-term pulses were divided into two or more subpulses with different spectra. The high-frequency pulses were produced at two phases of the wingbeat cycle: during the pronation of the wings at the highest point and at the beginning of their upward movement from the lowest point. In most of the specimens tested, the peak amplitude of sounds varied from 55 to 65 dB SPL at a distance of 6 cm from the insect body. However, in nine noctuid species, no high-frequency acoustic components were recorded. In these experiments, the acoustic flow from the flying moth within a frequency range of 2 to 20 kHz did not exceed the self-noise level of the microphone amplifier (RMS 18 dB SPL). Probable mechanisms of the high frequency acoustic emission during flight, the effect of these sounds on the auditory sensitivity of moths, and the possibility of their self-revealing to insectivorous bats are discussed. In addition, spectral characteristics of the moth echolocation clicks were more precisely determined within the higher frequency range (>100 kHz).  相似文献   

5.
Why Life Histories Evolve Differently in the Sea   总被引:3,自引:3,他引:0  
Marine life histories differ from terrestrial life historiesbecause seawater is denser and more viscous than air, becausedesiccation is not a problem for organisms in water, and becausefood is abundant in suspension and solution. (1) Mating andcompetition for paternity in the sea often differs. Female gametesare often spawned freely. Passively dispersed spermatophorescould in some cases provide single paternity to an entire clutchof offspring. Penises of sessile animals reach far for copulation.There are no pollinators. (2) In many clades of benthic marineanimals, greater dispersal of offspring is associated with largeadult size, and greater parental care of offspring and reducedplanktonic larval periods are associated with small adult size.(3) Many benthic marine animals are colonies with modular construction,and these also commonly brood embryos and have short-lived larvae,in contrast to related solitary forms. (4) Unlike dispersalof terrestrial animals, larval dispersal of marine animals isoften obligate with sexual reproduction and often includes aprecompetent period during which larvae cannot settle at goodsites. Unlike terrestrial seeds, marine larvae have no clearadaptations for dispersal, often grow during dispersal, andoften leave bad sites. Feeding planktonic larvae are commonamong marine animals and rare among other aquatic animals, perhapsbecause of persistent aquatic routes between habitable sitesfor marine animals. Peculiarities in marine life histories mayinfluence many aspects of evolution in the sea. Closely relatedsedentary marine animals can differ greatly in larval dispersalwith consequences for recruitment to populations, genetic exchangebetween benthic populations, adaptation to local conditions,sex allocation, interaction with kin, speciation, and extinction.  相似文献   

6.
ANDERS PAPE MØLLER 《Ibis》1996,138(4):112-119
Secondary sexual traits are characterized by their exaggerated expression relative to homologous nonsexual characters in other species. All models of sexual selection assume that sex traits are costly to produce and maintain, and individuals with reduced costs of production and maintenance of secondary sexual characters would be at a selective advantage. A number of morphological, physiological and behavioural traits may have evolved as a result of their cost-reducing properties: (1) body size, which does not change throughout life, that allows certain individuals to develop exaggerated sex traits, (2) cost-reducing traits, such as muscle size, that improve with practice and (3) actual cost-reducing traits, such as wing size in birds with song flight, which are produced in advance of or simultaneously with the sex trait. Cost-reducing traits may coevolve with secondary sexual characters and allow more extreme sexual signalling than would otherwise have been possible in their absence or in reduced versions.  相似文献   

7.
The relationship between body size and vocalization parameters has been studied in many animal species. In insect species, however, the effect of body size on song frequency has remained unclear. Here we analyzed the effect of body size on the frequency spectra of mating songs produced by the two-spotted cricket, Gryllus bimaculatus. We recorded the calling songs and courtship songs of male crickets of different body sizes. The calling songs contained a frequency component that peaked at 5.7 kHz. On the other hand, courtship songs contained two frequency components that peaked at 5.8 and 14.7 kHz. The dominant frequency of each component in both the calling and courtship songs was constant regardless of body size. The size of the harp and mirror regions in the cricket forewings, which are the acoustic sources of the songs, correlated positively with body size. These findings suggest that the frequency contents of both the calling and courtship songs of the cricket are unaffected by whole body, harp, or mirror size.  相似文献   

8.
ANDERS PAPE MØLLER 《Ibis》1996,138(1):112-119
Secondary sexual traits are characterized by their exaggerated expression relative to homologous nonsexual characters in other species. All models of sexual selection assume that sex traits are costly to produce and maintain, and individuals with reduced costs of production and maintenance of secondary sexual characters would be at a selective advantage. A number of morphological, physiological and behavioural traits may have evolved as a result of their cost-reducing properties: (1) body size, which does not change throughout life, that allows certain individuals to develop exaggerated sex traits, (2) cost-reducing traits, such as muscle size, that improve with practice and (3) actual cost-reducing traits, such as wing size in birds with song flight, which are produced in advance of or simultaneously with the sex trait. Cost-reducing traits may coevolve with secondary sexual characters and allow more extreme sexual signalling than would otherwise have been possible in their absence or in reduced versions.  相似文献   

9.
Secondary sexual characters may have evolved in part to signalresistance to parasites. Avian song has been hypothesized tobe involved in this process, but the role of parasites in modulatingacoustic communication systems in birds remains largely unknown,owing to lack of experiments. We studied the relationship betweenparasitism, testosterone, song performance, and mating successin male collared flycatchers (Ficedula albicollis) by experimentallychallenging their immune system with a novel antigen. We predictedthat a challenge of the immune system would reduce song performance,and that this reduction would be conditional on the size ofa visual sexual signal, the forehead patch that was previouslyfound to reflect resistance. An antagonistic linkage betweentestosterone and immune function would predict that a challengeof the immune system should suppress testosterone level. Animmunological treatment by sheep red blood cells (SRBCs) triggereda decrease in body mass, testosterone level, and song rate,but other song traits were not significantly affected by theantigen challenge. Initial testosterone level was associatedwith forehead patch size and all song traits except song rate.SRBC injection caused stronger reduction in song rate amongmales with smaller forehead patches, and the change in songrate was also predictable by song features such as strophe complexityand length. We show that song rate and other song characteristicsmay be important cues in male-male competition and female choice.These results suggest that parasite-mediated sexual selectionhas contributed in shaping a complex acoustic communicationsystem in the collared flycatcher, and that testosterone mayplay an important role in this process. Parasitism may drivea multiple signaling mechanism involving acoustic and visualtraits with different signal function.  相似文献   

10.
The characteristics of sounds produced by fishes are influenced by several factors such as size. The current study analyses factors affecting structural properties of acoustic signals produced by female croaking gouramis Trichopsis vittata during agonistic interactions. Female sounds (although seldom analysed separately from male sounds) can equally be used to investigate factors affecting the sound characteristics in fish. Sound structure, dominant frequency and sound pressure levels (SPL) were determined and correlated to body size and the order in which sounds were emitted. Croaking sounds consisted of series of single-pulsed or double-pulsed bursts, each burst produced by one pectoral fin. Main energies were concentrated between 1.3 and 1.5 kHz. The dominant frequency decreased with size, as did the percentage of single-pulsed bursts within croaking sounds. The SPL and the number of bursts within a sound were independent of size but decreased significantly with the order of their production. Thus, acoustic signals produced at the beginning of agonistic interactions were louder and consisted of more bursts than subsequent ones. Our data indicate that body size affects the dominant frequency and structure of sounds. The increase in the percentage of double-pulsed bursts with size may be due to stronger pectoral muscles in larger fish. In contrast, ongoing fights apparently result in muscle fatigue and subsequently in a decline in the number of bursts and SPL. The factor ‘order of sound production’ points to an intra-individual variability of sounds and should be considered in future studies.  相似文献   

11.
Van Hout AJ  Eens M  Pinxten R 《PloS one》2011,6(1):e16326
Carotenoids are a class of pigments which are widely used by animals for the expression of yellow-to-red colour signals, such as bill or plumage colour. Since they also have been shown to promote immunocompetence and to function as antioxidants, many studies have investigated a potential allocation trade-off with respect to carotenoid-based signals within the context of sexual selection. Although an effect of carotenoids on non-visual (e.g. acoustic) signals involved in sexual selection has been hypothesized, this has to date not been investigated. First, we examined a potential effect of dietary carotenoid supplementation on overall song rate during the non-breeding season in captive male European starlings (Sturnus vulgaris). After only 3-7 days, we found a significant (body-mass independent) positive effect of carotenoid availability on overall song rate. Secondly, as a number of studies suggest that carotenoids could affect the modulation of sexual signals by plasma levels of the steroid hormone testosterone (T), we used the same birds to subsequently investigate whether carotenoid availability affects the increase in (nestbox-oriented) song rate induced by experimentally elevated plasma T levels. Our results suggest that carotenoids may enhance the positive effect of elevated plasma T levels on nestbox-oriented song rate. Moreover, while non-supplemented starlings responded to T-implantation with an increase in both overall song rate and nestbox-oriented song, carotenoid-supplemented starlings instead shifted song production towards (reproductively relevant) nestbox-oriented song, without increasing overall song rate. Given that song rate is an acoustic signal rather than a visual signal, our findings therefore indicate that the role of carotenoids in (sexual) signalling need not be dependent on their function as pigments.  相似文献   

12.
The aims of this study were to (i) assess the efficacy of passive acoustic monitoring (PAM) for detecting Arctic Charr at their spawning grounds and (ii) characterize the overall acoustic soundscape of these sites. PAM was carried out over three Arctic Charr spawning grounds in the UK, one lotic and two lentic. 24-h cycles of recordings were collected prior to and during the Arctic Charr spawning season, which was determined from data returns by simultaneous net monitoring. Acoustic analysis consisted of manual quantification of sound sources, Acoustic Complexity Index (ACI) calculation and spectral analysis in 1/3 octave band (SPL; dB re 1 μPa). In the lotic spawning ground, prior to the beginning of Arctic Charr spawning, SPL and ACI showed a restricted range of variation throughout the 24-h, while during spawning the night values of SPL and ACI were found to significantly increase, concurrently with the rate of gravel noise induced by fish spawning activities and fish air passage sounds. Both prior to and during the Arctic Charr run, the lentic soundscape was characterized by diel variation due to the daytime presence of anthropogenic noise and the night-time presence of insect calls, while only a few occurrences of fish air passage sounds and gravel noise were recorded. These findings suggest that PAM over Arctic Charr spawning grounds could provide meaningful information to be used in developing management plans for this threatened species, such as determining the location and time of arrival, diel pattern and length of spawning activities.  相似文献   

13.
Bird songs in island populations have often been reported to be simplified, in that island birds have a smaller number of song types and song-element types compared to mainland birds. However, there is less information on the characteristics of acoustic structure in island songs. I investigated song structure of one mainland and three island populations of Japanese bush warblers, Cettia diphone, and found that island songs had an acoustically simple structure. The frequency-modulated (FM) portions of the songs were shorter and had fewer frequency inflections in the insular populations than in the mainland population, while the number of FM notes, the frequency range of these notes, and the song repertoire sizes of males did not differ between the islands and the mainland. I also investigated whether the song complexity is related to sexual selection pressure using the degree of sexual size dimorphism as a proxy for the latter. The degree of dimorphism in body mass was larger on the mainland. Thus, weakened sexual selection on islands is a possible factor in the formation of simple songs. Further studies related to male–male competition and female choice on islands are required.  相似文献   

14.
Females can potentially choose high-quality males by evaluating male secondary sexual traits such as acoustic signals. In field crickets (Orthoptera: Gryllidae), body size is thought to indicate male quality. Song carrier frequency (FQ) has been suggested to indicate male body size because the areas of the wing that control FQ (harp) scale with body size. However, no direct evidence showing that males can advertise their size via FQ exists for grylline crickets. Firstly, we show the lack of evidence indicating a clear relationship between FQ and body size for grylline crickets by conducting a literature review. We then calculate the three-way relationship between body size, harp size and FQ and show no relationship between FQ and body size for Gryllus bimaculatus. Eight other commonly measured song parameters also failed to indicate body size. Individual female preference functions for FQ are calculated and we demonstrate that females cannot select large males on the basis of FQ. Furthermore, we demonstrate that variation in male FQ falls within the range of female preference at the population level. Females probably cannot evaluate male body size based on the temporal and spectral properties of male calling song and alternative avenues of study are suggested.  相似文献   

15.
The cicada Okanagana rimosa (Say) has an acoustic communication system with three types of loud timbal sounds: (i) A calling song lasting several seconds to about 1 min which consists of a sequence of chirps at a repetition rate of 83 chirps per second. Each chirp of about 6 ms duration contains 4-5 pulses. The sound level of the calling song is 87-90 dB SPL at a distance of 15 cm. (ii) An amplitude modulated courtship song with increasing amplitude and repetition rate of chirps and pulses. (iii) A protest squawk with irregular chirp and pulse structure. The spectra of all three types are similar and show main energy peaks at 8-10 kHz. Only males sing, and calling song production is influenced by the songs of other males, resulting in an almost continuous sound in dense populations. In such populations, the calling songs overlap and the temporal structure of individual songs is obscured within the habitat. The calling song of the broadly sympatric, closely related species O. canadensis (Provander) is similar in frequency content, but distinct in the temporal pattern (24 chirps per second, 24 ms chirp duration, eight pulses per chirp) which is likely important for species separation in sympatric populations. The hearing threshold of the auditory nerve is similar for females and males of O. rimosa and most sensitive at 4-5 kHz. Experiments in the field show that female phonotaxis of O. rimosa depends on parameters of the calling song. Most females are attracted to calling song models with a 9 kHz carrier frequency (peak frequency of the calling song), but not to models with a 5 kHz carrier frequency (minimum hearing threshold). Phonotaxis depends on temporal parameters of the conspecific song, especially chirp repetition rate. Calling song production is influenced by environmental factors, and likelihood to sing increases with temperature and brightness of the sky. Correspondingly, females perform phonotaxis most often during sunny conditions with temperatures above 22 degrees C. Non-mated and mated females are attracted by the acoustic signals, and the percentage of mated females performing phonotaxis increases during the season.  相似文献   

16.
Several hypotheses have been put forward to explain the evolution of extreme sexual size dimorphism (SSD). Among them, the gravity hypothesis (GH) explains that extreme SSD has evolved in spiders because smaller males have a mating or survival advantage by climbing faster. However, few studies have supported this hypothesis thus far. Using a wide span of spider body sizes, we show that there is an optimal body size (7.4 mm) for climbing and that extreme SSD evolves only in spiders that: (1) live in high‐habitat patches and (2) in which females are larger than the optimal size. We report that the evidence for the GH across studies depends on whether the body size of individuals expands beyond the optimal climbing size. We also present an ad hoc biomechanical model that shows how the higher stride frequency of small animals predicts an optimal body size for climbing.  相似文献   

17.
Understanding the influence of intrinsic (genetic and morphological) and extrinsic (geographical, environmental and social) factors on the performance and spatial differentiation of sexual signals, such as bird song, can help identify behavioural indicators of individual quality, habitat degradation and social environment. We used the Iberian Bluethroat Luscinia svecica azuricollis, a migratory bird that breeds in fragmented landscapes dominated by shrublands, as a case study to: (1) assess how a set of acoustic indicators of song performance are driven by intrinsic and extrinsic factors; and (2) contrast deterministic (adaptations to the environmental context and morphological constraints) vs. stochastic (differentiation by geographical isolation) explanations for song differentiation patterns. We explored acoustic indicators of song performance (spectral, temporal and song complexity) in relation to parameters related to genetic structure, body size, habitat type, habitat quality (assessed through a spatially explicit modelling approach) and social context (population abundance and songbird community composition). Then, we explored the contribution of genetic, geographical and environmental dissimilarity to song diversification across space. Our results highlight an association of song spectral variables with genetic structure and a significant connection between song complexity and duration with habitat quality. We found no relationship between social features and acoustic variables, or between song differentiation and genetic or geographical distances. There was, however, a correlation between song differentiation and environmental dissimilarity. We recommend the consideration of song complexity as an indicator of habitat quality.  相似文献   

18.
Male Caribbean fruit flies, Anastrepha suspensa (Loew) produce two sounds in sexual contexts, calling songs and precopulatory songs. Calling song occurs during pheromone release from territories within leks and consists of repeated bursts of sound (pulse trains). Virgin female A. suspensa became more active in the presence of recorded calling songs. Activity during the broadcast of a heterospecific song did not differ from movement during periods of silence. A conspecific song typical of smaller males, i.e. conspicuous for its long periods between pulse trains, also failed to elicit more activity by virgin females than silence. Mated females were most active during silences. Unmated males had no obvious reaction to sound. Calling songs are apparently sexually important communications which females discriminate among and may use as cues for locating and/or choosing between mates. Precopulatory song is produced by mounted males just before and during the early stages of copulation. Males that did not produce such songs remained coupled for shorter periods, perhaps passing fewer sperm. Wingless (muted) males were more likely to complete aedeagal insertion if a recorded precopulatory song was broadcast. Calling song played at the same level (90 dB) had no significant effect on the acceptance of males, nor did precopulatory song at a lower SPL (52dB). Precopulatory song may be used to display male vigour to choosing females.  相似文献   

19.
Female red-winged blackbirds (Agelaius phoeniceus) were tested for response to songs of male red-winged blackbirds differing in sound-pressure level (SPL) of playback. Subjects gave significantly more copulation-solicitation displays in response to playback of songs at 85 dB SPL than to playback of the same songs at 72 dB SPL. The strength of the preference, as judged by the ratio of response to high and low SPL playback (1.15:1), was lower than that of preferences for high SPL shown by insects and anurans. Female red-winged blackbirds responded preferentially to a conspecific song relative to a heterospecific imitation, even when the imitation was presented at an SPL 13 dB higher than that of the conspecific song. By contrast, female redwings did not maintain a preference for multiple conspecific song types over single types when the single song types were presented at the higher SPL. These results are compatible with Klump & Gerhardt's (1987) suggestion that the intensity independence of female preferences varies with the relative benefit females obtain from each preference.  相似文献   

20.
Sexually size dimorphic brains and song complexity in passerine birds   总被引:1,自引:0,他引:1  
Neural correlates of bird song involve the volume of particularsong nuclei in the brain that govern song development, production,and perception. Intra- and interspecific variation in the volumeof these song nuclei are associated with overall brain size,suggesting that the integration of complex songs into the brainrequires general neural augmentation. In a comparative studyof passerine birds based on generalized least square models,we tested this hypothesis by exploring the interspecific relationshipbetween overall brain size and repertoire size. We found nosignificant association between song complexity of males andbrain size adjusted for body size. However, species in whichmales produced complex songs tended to have sex differencesin overall brain size. This pattern became stronger when wecontrolled statistically for female song complexity by usingsex differences in song complexity. In species with large differencesin song complexity, females evolved smaller brains than didmales. Our results suggest no role for the evolution of extendedneural space, as reflected by total brain size, owing to songcomplexity. However, factors associated with sexual selectionmirrored by sex differences in song complexity were relatedto sexual dimorphism in overall brain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号