首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Life on Earth is supported by an infinite number of interactions among organisms. Species interactions in these networks are influenced by latitude, evolutionary history and species traits. We performed a global‐scale literature analysis to build up a database of interactions between anuran communities and their preys, from a wide range of geographical areas, using a network approach. For this purpose, we compiled a total of 55 weighted anuran–prey interaction networks, 39 located in the tropics and 16 in temperate areas. We tested the influence of latitude, as well as anuran taxonomic, functional and phylogenetic richness on network metrics. We found that anuran–prey networks are not nested, exhibit low complementary specialization and modularity and high connectance when compared to other types of networks. The main effects on network metrics were related to latitude, followed by anuran taxonomic, functional and phylogenetic richness, a pattern similar to the emerging in mutualistic networks. Our study is the first integrated analysis of the structural patterns in anuran–prey antagonistic interaction networks in different parts of the world. We suggest that different processes, mediated mainly by latitude, are modeling the architecture of anuran–prey networks across the globe.  相似文献   

3.
Modularity is a recurrent and important property of bipartite ecological networks. Although well‐resolved ecological networks describe interaction frequencies between species pairs, modularity of bipartite networks has been analysed only on the basis of binary presence–absence data. We employ a new algorithm to detect modularity in weighted bipartite networks in a global analysis of avian seed‐dispersal networks. We define roles of species, such as connector values, for weighted and binary networks and associate them with avian species traits and phylogeny. The weighted, but not binary, analysis identified a positive relationship between climatic seasonality and modularity, whereas past climate stability and phylogenetic signal were only weakly related to modularity. Connector values were associated with foraging behaviour and were phylogenetically conserved. The weighted modularity analysis demonstrates the dominating impact of ecological factors on the structure of seed‐dispersal networks, but also underscores the relevance of evolutionary history in shaping species roles in ecological communities.  相似文献   

4.
Many complex networks such as computer and social networks exhibit modular structures, where links between nodes are much denser within modules than between modules. It is widely believed that cellular networks are also modular, reflecting the relative independence and coherence of different functional units in a cell. While many authors have claimed that observations from the yeast protein–protein interaction (PPI) network support the above hypothesis, the observed structural modularity may be an artifact because the current PPI data include interactions inferred from protein complexes through approaches that create modules (e.g., assigning pairwise interactions among all proteins in a complex). Here we analyze the yeast PPI network including protein complexes (PIC network) and excluding complexes (PEC network). We find that both PIC and PEC networks show a significantly greater structural modularity than that of randomly rewired networks. Nonetheless, there is little evidence that the structural modules correspond to functional units, particularly in the PEC network. More disturbingly, there is no evolutionary conservation among yeast, fly, and nematode modules at either the whole-module or protein-pair level. Neither is there a correlation between the evolutionary or phylogenetic conservation of a protein and the extent of its participation in various modules. Using computer simulation, we demonstrate that a higher-than-expected modularity can arise during network growth through a simple model of gene duplication, without natural selection for modularity. Taken together, our results suggest the intriguing possibility that the structural modules in the PPI network originated as an evolutionary byproduct without biological significance.  相似文献   

5.
Little is known about how biogeographic processes affect the dynamics of species interactions in space and time, although it is widely accepted that they drive community assemblage. In functional interactions, such as pollination and seed dispersal, species that share common ancestry tend to retain a common number of interactions and interact with similar sets of species, a pattern more commonly observed for animals than plants. On the one hand, the most coherent explanation for the phylogenetic structure of pollination and seed dispersal networks is that species retain ecological traits over evolution, which would cause the conservation of interaction partners. On the other hand, fundamental processes of biodiversity, such as dispersal and evolutionary rates seem to have important roles shaping the observed phylogenetic structure of mutualistic networks, but no model has been created to study the effect of these processes in the phylogenetic structure of mutualistic interactions. Here, we developed a stochastic simulation model to study the evolution of two interacting groups of species, which evolve independently over the same geographical domain. In our model, individuals of the same interaction group share ecological traits, whereas individuals of different trophic groups are ecologically distinct. We show that even in the absence of ecological differences between individuals, and disregarding any conservation of phenotypical and phenological traits between species, the interplay of dispersal and speciation is still a major driver of complex phylogenetic structure of functional interactions, such as pollination and seed dispersal.  相似文献   

6.
Human activities have led to the loss of habitats and biodiversity in the Atlantic Rain Forest in Brazil. Ecological restoration aims to rebuild this biome and should include not only the reinstatement of species but also the reestablishment of complex ecological interactions and the ecological functions that they provide. One such function is seed dispersal, which is provided by the interactions between animal frugivores and plants. We studied seed dispersal networks in 3 different tropical forest sites restored 15, 25, and 57 years ago; temporal scales rarely observed in restoration studies. We investigated changes in network structure (nestedness, modularity, and network specialization) in these communities over restoration time. Although network size and the number of interactions increased with time since restoration, the networks were composed of generalist birds, and the large frugivores remained absent. Contrary to our expectations though, species richness was highest in the 25‐year‐old site, maybe due to the higher number of species used in the planting. Nestedness values were low in all 3 networks, but the highest nestedness was observed in the intermediate‐aged site. However, the oldest network was significantly modular and showed higher complementary specialization. These results suggest that 57 years after restoration, the complexity of mutualistic interactions in seed dispersal networks has increased, this enhancing ecosystem function in the Atlantic forest.  相似文献   

7.
Plant–animal mutualistic interactions, such as pollination and seed dispersal, affect ecosystem functioning by driving plant population dynamics. However, little is known of how the diversity of interactions in these mutualistic networks determines plant regeneration dynamics. To fill this gap, interaction networks should not only account for the number of seeds dispersed by animals, but also for seed fate after dispersal. Here, we compare plant–animal networks at both the seed dispersal and seedling recruitment stage to evaluate how interaction diversity, represented by different network metrics, changes throughout the process of plant regeneration. We focused on a system with six species of frugivorous birds and three species of fleshy‐fruited trees in the temperate secondary forest of the Cantabrian Range (northern Iberian Peninsula). We considered two plant cohorts corresponding to two fruiting years showing strong differences in fruit and frugivore abundance. Seed dispersal interactions were estimated from a spatially‐explicit, field‐validated model predicting tree and bird species‐specific seed deposition in different microhabitats. These interactions were further transformed into interactions at the seedling recruitment stage by accounting for plant‐ and microhabitat‐specific seed fates estimated from field sampling. We found that network interaction diversity varied across plant regeneration stages and cohorts, both in terms of the evenness and the number of paired interactions. Tree–bird interactions were more evenly distributed across species pairs at the recruitment stage than at the seed deposition stage, although some interactions disappeared in the seed‐to‐seedling transition for one plant cohort. The variations in interaction diversity were explained by between‐plant differences in post‐dispersal seed fate and in inter‐annual fruit production, rather than by differences between frugivores in seed deposition patterns. These results highlight the need for integrating plant traits and disperser quality to predict the functional outcome of plant–animal mutualistic networks.  相似文献   

8.
Interaction webs, or networks, define how the members of two or more trophic levels interact. However, the traits that mediate network structure have not been widely investigated. Generally, the mechanism that determines plant-pollinator partnerships is thought to involve the matching of a suite of species traits (such as abundance, phenology, morphology) between trophic levels. These traits are often unknown or hard to measure, but may reflect phylogenetic history. We asked whether morphological traits or phylogenetic history were more important in mediating network structure in mutualistic plant-pollinator interaction networks from Western Canada. At the plant species level, sexual system, growth form, and flower symmetry were the most important traits. For example species with radially symmetrical flowers had more connections within their modules (a subset of species that interact more among one another than outside of the module) than species with bilaterally symmetrical flowers. At the pollinator species level, social species had more connections within and among modules. In addition, larger pollinators tended to be more specialized. As traits mediate interactions and have a phylogenetic signal, we found that phylogenetically close species tend to interact with a similar set of species. At the network level, patterns were weak, but we found increasing functional trait and phylogenetic diversity of plants associated with increased weighted nestedness. These results provide evidence that both specific traits and phylogenetic history can contribute to the nature of mutualistic interactions within networks, but they explain less variation between networks.  相似文献   

9.
Species phenotypic traits affect the interaction patterns and the organization of seed‐dispersal interaction networks. Understanding the relationship between species characteristics and network structure help us understand the assembly of natural communities and how communities function. Here, we examine how species traits may affect the rules leading to patterns of interaction among plants and fruit‐eating vertebrates. We study a species‐rich seed‐dispersal system using a model selection approach to examine whether the rules underlying network structure are driven by constraints in fruit resource exploitation, by preferential consumption of fruits by the frugivores, or by a combination of both. We performed analyses for the whole system and for bird and mammal assemblages separately, and identified the animal and plant characteristics shaping interaction rules. The structure of the analyzed interaction network was better explained by constraints in resource exploitation in the case of birds and by preferential consumption of fruits with specific traits for mammals. These contrasting results when looking at bird–plant and mammal–plant interactions suggest that the same type of interaction is organized by different processes depending on the assemblage we focus on. Size‐related restrictions of the interacting species (both for mammals and birds) were the most important factors driving the interaction rules. Our results suggest that the structure of seed‐dispersal interaction networks can be explained using species traits and interaction rules related to simple ecological mechanisms.  相似文献   

10.
Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction networks became to exhibit modularity in their evolution? Here, we propose a hypothesis of modularity in the evolution of yeast protein interaction network based on molecular evolutionary evidence. We assigned yeast proteins into six evolutionary ages by constructing a phylogenetic profile. We found that all the almost half of hub proteins are evolutionarily new. Examining the evolutionary processes of protein complexes, functional modules and topological modules, we also found that member proteins of these modules tend to appear in one or two evolutionary ages. Moreover, proteins in protein complexes and topological modules show significantly low evolutionary rates than those not in these modules. Our results suggest a hypothesis of modularity in the evolution of yeast protein interaction network as systems evolution.  相似文献   

11.
Understanding the processes that determine the architecture of interaction networks represents a major challenge in ecology and evolutionary biology. One of the most important interactions involving plants is the interaction between plants and mycorrhizal fungi. While there is a mounting body of research that has studied the architecture of plant–fungus interaction networks, less is known about the potential factors that drive network architecture. In this study, we described the architecture of the network of interactions between mycorrhizal fungi and 44 orchid species that represented different life forms and co‐occurred in tropical forest and assessed the relative importance of ecological, evolutionary and co‐evolutionary mechanisms determining network architecture. We found 87 different fungal operational taxonomic units (OTUs), most of which were members of the Tulasnellaceae. Most orchid species associated with multiple fungi simultaneously, indicating that extreme host selectivity was rare. However, an increasing specificity towards Tulasnellaceae fungal associates from terrestrial to epiphytic and lithophytic orchids was observed. The network of interactions showed an association pattern that was significantly modular (M = 0.7389, Mrandom = 0.6998) and nested (NODF = 5.53, p < 0.05). Terrestrial orchids had almost no links to modules containing epiphytic or lithophytic orchids, while modules containing epiphytic orchids also contained lithophytic orchids. Within each life form several modules were observed, suggesting that the processes that organize orchid–fungus interactions are independent of life form. The overall phylogenetic signal for both partners in the interaction network was very weak. Overall, these results indicate that tropical orchids associate with a wide number of mycorrhizal fungi and that ecological rather than phylogenetic constraints determine network architecture.  相似文献   

12.
Complex networks of species interactions might be determined by species traits but also by simple chance meetings governed by species abundances. Although the idea that species traits structure mutualistic networks is appealing, most studies have found abundance to be a major structuring mechanism underlying interaction frequencies. With a well‐resolved plant–hummingbird interaction network from the Neotropical savanna in Brazil, we asked whether species morphology, phenology, nectar availability and habitat occupancy and/or abundance best predicted the frequency of interactions. For this, we constructed interaction probability matrices and compared them to the observed plant‐hummingbird matrix through a likelihood approach. Furthermore, a recently proposed modularity algorithm for weighted bipartite networks was employed to evaluate whether these factors also scale‐up to the formation of modules in the network. Interaction frequencies were best predicted by species morphology, phenology and habitat occupancy, while species abundances and nectar availability performed poorly. The plant–hummingbird network was modular, and modules were associated to morphological specialization and habitat occupancy. Our findings highlight the importance of traits as determinants of interaction frequencies and network structure, corroborating the results of a previous study on a plant–hummingbird network from the Brazilian Atlantic Forest. Thus, we propose that traits matter more in tropical plant–hummingbird networks than in less specialized systems. To test the generality of this hypothesis, future research could employ geographic or taxonomic cross‐system comparisons contrasting networks with known differences in level of specialization.  相似文献   

13.
Most studies of plant–animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human‐driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant–animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.  相似文献   

14.
1. Ants establish mutualistic interactions involving a wide range of protective relationships (myrmecophily), in which they provide defence against enemies and partners provide food rewards and/or refuge. Although similar in the general outcome, myrmecophilic interactions differ in some characteristics such as quantity and quality of rewards offered by partners which may lead to different specialisation levels and, consequently, to different network properties. 2. The aim of this study was to identify structural patterns in myrmecophilic interaction networks, focusing on aspects related to specialisation: network modularity, nestedness and taxonomic relatedness of interaction ranges. To achieve this, a database of networks was compiled, including the following interactions: ants and domatia‐bearing plants (myrmecophytes); ants and extrafloral nectary‐bearing plants (EFNs); ants and floral nectary‐bearing plants (FNs); ants and Lepidoptera caterpillars; and ants and Hemiptera. 3. Myrmecophilic networks differed in their topology, with ant–myrmecophyte and ant–Lepidoptera networks being similar in their structural properties. A continuum was found, ranging from highly modular networks and phylogenetically structured interaction ranges in ant–myrmecophyte followed by ant–Lepidoptera networks to low modularity and taxonomically unrelated interaction ranges in ant–Hemiptera, EFN and FN networks. 4. These results suggest that different network topologies may be found across communities of species with similar interaction types, but also, that similar network topologies can be achieved through different mechanisms such as those between ants and myrmecophytes or Lepidoptera larvae. This study contributes to a generalisation of myrmecophilic network patterns and a better understanding of the relationship between specialisation and network topology.  相似文献   

15.
Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.  相似文献   

16.
Many ecological systems can be represented as networks of interactions. A key feature in these networks is their organization into modules, which are subsets of tightly connected elements. We introduce MODULAR to perform rapid and autonomous calculation of modularity in network sets. MODULAR reads a set of files representing unipartite or bipartite networks, and identifies modules using two different modularity metrics widely used in the ecological networks literature. To estimate modularity, the software offers five optimization methods to the user. The software also includes two null models commonly used in studies of ecological networks to verify how the degree of modularity differs from two distinct theoretical benchmarks.  相似文献   

17.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

18.
The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.  相似文献   

19.
Biological networks have evolved to be highly functional within uncertain environments while remaining extremely adaptable. One of the main contributors to the robustness and evolvability of biological networks is believed to be their modularity of function, with modules defined as sets of genes that are strongly interconnected but whose function is separable from those of other modules. Here, we investigate the in silico evolution of modularity and robustness in complex artificial metabolic networks that encode an increasing amount of information about their environment while acquiring ubiquitous features of biological, social, and engineering networks, such as scale-free edge distribution, small-world property, and fault-tolerance. These networks evolve in environments that differ in their predictability, and allow us to study modularity from topological, information-theoretic, and gene-epistatic points of view using new tools that do not depend on any preconceived notion of modularity. We find that for our evolved complex networks as well as for the yeast protein–protein interaction network, synthetic lethal gene pairs consist mostly of redundant genes that lie close to each other and therefore within modules, while knockdown suppressor gene pairs are farther apart and often straddle modules, suggesting that knockdown rescue is mediated by alternative pathways or modules. The combination of network modularity tools together with genetic interaction data constitutes a powerful approach to study and dissect the role of modularity in the evolution and function of biological networks.  相似文献   

20.
Plant–animal interaction science repeatedly finds that plant species differ by orders of magnitude in the number of interactions they support. The identification of plant species that play key structural roles in plant–animal networks is a global conservation priority; however, in hyperdiverse systems such as tropical forests, empirical datasets are scarce. Plant species with longer reproductive seasons are posited to support more interactions compared to plant species with shorter reproductive seasons but this hypothesis has not been evaluated for plant species with the longest reproductive season possible at the individual plant level, the continuous reproductive phenology. Resource predictability is also associated with promoting specialization, and therefore, continuous reproduction may instead favor specialist interactions. Here, we use quantitative pollinating insect–plant networks constructed from countryside habitat of the Tropical Wet forest Life Zone and modularity analysis to test whether plant species that share the trait of continuous flowering hold core roles in mutualistic networks. With a few exceptions, most plant species sampled within our network were assigned to the role of peripheral. All but one network had significantly high modularity scores and each continuous flowering plant species was in a different module. Our work reveals that the continuous flowering plant species differed in some networks in their topological role, and that more evidence was found for the phenology to support specialized subsets of interactions. Our findings suggest that the conservation of Neotropical pollinating insect communities may require planting species from each module rather than identifying and conserving network hubs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号