首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Multiple myeloma (MM) is a malignant tumor of transformed plasma cells. MM pathogenesis is a multistep process. This cancer can occur de novo (rarely) or it can develop from monoclonal gammopathy of undetermined significance (most of the cases). MM can be asymptomatic (smoldering myeloma) or clinically active. Malignant plasma cells exploit intrinsic and extrinsic bone marrow microenvironment-derived growth signals. Upregulation of stress-coping pathways is also instrumental to maintain MM cell growth. The phylogenetically related Ser/Thr kinases CSNK1A1 (CK1α) and CSNK2 (CK2) have recently gained a growing importance in hematologic malignancies arising both from precursors and from mature blood cells. In multiple myeloma, CK1α or CK2 sustain oncogenic cascades, such as the PI3K/AKT, JAK/STAT, and NF-κB, as well as propel stress-related signaling that help in coping with different noxae. Data also suggest that these kinases modulate the delivery of growth factors and cytokines from the bone marrow stroma. The “non-oncogene addiction” phenotype generated by the increased activity of CK1α and CK2 in multiple myeloma contributes to malignant plasma cell proliferation and survival and represents an Achilles’ heel for the activity of small ATP competitive CK1α or CK2 inhibitors.  相似文献   

3.
Summary H1° histones were purified by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis from human lung carcinoma (line DMS79), human hepatoblastoma (HepG2), human adult lung and human adult and fetal liver. The purified human H1° histones were analyzed for their amino acid composition and terminal residues. The comparative analysis of the amino acid compositions of the different human H1° histones showed that: (a) all the H1° preparations have the characteristically high lysine content associated with a low arginine content, which distinguishes outer histones from core histones; (b) H1° is distinguishable from other H1 histones by the presence of methionine and histidine; (c) H1° histones from human adult, fetal and cancer cells are very similar in amino acid composition, and in cancer cells the level of the H1° histone is not inversely related with cell growth rate nor with the expression of the -fetoprotein gene.  相似文献   

4.
Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes.  相似文献   

5.
An electrochemical indirect competitive immunoassay protocol as a promising cytosensing strategy was developed to detect integrin β1 expression on human breast cancer MCF-7 cells and adriamycin-resistant human breast cancer MCF-7 (MCF-7/ADR) cells and quantify the cell number. Integrin α5β1 was adsorbed on the gold-nanoparticle modified glassy carbon electrode to bind integrin β1 monoclonal antibody (anti-CD29 mAb). A sandwich structure was then formed using nanocomposites which consisted of horseradish peroxidase (HRP) labeled anti-antibody and gold nanoparticles. HRP bound on the electrode surface could cause an amperometric response of the hydroquinone-H(2)O(2) system. The assembly of the sandwich structure was inhibited by tumor cells to give decreased enzyme-catalytic signals due to the capture of anti-CD29 mAb by integrin β1 on cell membranes. Under optimal conditions the relative current change (S) was proportional to the cell concentration from 1.6×10(3) to 2.0×10(6)cellsmL(-1) with a detection limit of 700cellsmL(-1). Integrin β1 expression in MCF-7/ADR cells was found to be significantly higher than that in MCF-7 cells, indicating the increased adhesion ability of MCF-7/ADR cells.  相似文献   

6.
7.
While elevated plasma prorenin levels are commonly found in diabetic patients and correlate with diabetic nephropathy, the pathological role of prorenin, if any, remains unclear. Prorenin binding to the (pro)renin receptor [(p)RR] unmasks prorenin catalytic activity. We asked whether elevated prorenin could be activated at the site of renal mesangial cells (MCs) through receptor binding without being proteolytically converted to renin. Recombinant inactive rat prorenin and a mutant prorenin that is noncleavable, i.e., cannot be activated proteolytically, are produced in 293 cells. After MCs were incubated with 10(-7) M native or mutant prorenin for 6 h, cultured supernatant acquired the ability to generate angiotensin I (ANG I) from angiotensinogen, indicating both prorenins were activated. Small interfering RNA (siRNA) against the (p)RR blocked their activation. Furthermore, either native or mutant rat prorenin at 10(-7) M alone similarly and significantly induced transforming growth factor-β(1), plasminogen activator inhibitor-1 (PAI-1), and fibronectin mRNA expression, and these effects were blocked by (p)RR siRNA, but not by the ANG II receptor antagonist, saralasin. When angiotensinogen was also added to cultured MCs with inactive native or mutant prorenin, PAI-1 and fibronectin were further increased significantly compared with prorenin or mutant prorenin alone. This effect was blocked partially by treatment with (p)RR siRNA or saralasin. We conclude that prorenin binds the (p)RR on renal MCs and is activated nonproteolytically. This activation leads to increased expression of PAI-1 and transforming growth factor-β(1) via ANG II-independent and ANG II-dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may play a role in the development of diabetic nephropathy.  相似文献   

8.
Previously we have described the induction of MHC-unrestricted killer cells against bladder tumour cells by bacillus Calmette-Guérin (BCG), termed BCG-activated killer (BAK) cells. In the present paper we deal with the accessory-cell requirement for the activation of BAK cells. We show that monocytes are required for activating BAK cells, since no cytotoxicity can be induced in the absence of monocytes. Therefore, these phagocytes may represent the first step during the activation cascade of BAK cells. Furthermore, the presence of CD4+ T cells was essential for generating BAK cells: depleting peripheral blood mononuclear cells of CD4 cells prior to stimulation with BCG abolished the cytotoxicity against bladder tumour cells. Experiments with monoclonal antibodies (mAb) neutralizing the activity of either interleukin-2 (IL-2) or interferon (IFN) underlined the importance of these cytokines: both mAb blocked the induction of BAK cells. Since both cytokines are related to the so-called Th1 pattern of T cells, we consider the second step of the generation of BAK cells as follows: monocytes presenting antigens of BCG trigger Th1-like cells in a preferred manner. These Th1-like T cells secrete IL-2 and IFN and, thus, activate the BAK effector cells. Since CD4+ cells are dominant in the cells infiltrating the bladder wall after intravesical instillation of BCG in vivo, we postulate an important role for the Th1 subpopulation. We further postulate that the occurrence of macrophages in this infiltrate seems to be significant in the maintenance of the relapse-free state of the patient.  相似文献   

9.
The transforming growth factor-beta (TGF-β) 1 is a mediator of extracellular matrix (ECM) gene expression in mesangial cells and the development of diabetic glomerulopathy. Here, we investigate the effects of TGF-β1 on laminin γ1 and fibronectin polypeptide expression and cell survival in mouse mesangial cells (MES-13). TGF-β1 (10 ng/ml) stimulates laminin-γ1 and fibronectin expression ~two-fold in a time-dependent manner (0–48 h). TGF-β1 treatment also retards laminin-γ1 mobility on SDS-gels, and tunicamycin, an inhibitor of the N-linked glycosylation, blocks the mobility shift. TGF-β1 increases the binding of laminin γ1 to WGA-agarose and the binding is abolished by tunicamycin suggesting that laminin γ1 is modified by N-linked glycosylation. TGF-β1 also elevates fibronectin glycosylation but its mobility is not altered. The degradation of laminin γ1 and fibronectin proteins is reduced by their glycosylation. In addition, TGF-β1 enhances mesangial cell viability and metabolic activities initially (0–24 h); however, eventually leads to cell death (24–48 h). TGF-β1 elevates pro-apoptotic caspase-3 activity and decrease cell cycle progression factor cyclin D1 expression, which parallels cell death. These results indicate that TGF-β1 plays an important role in ECM expression, protein glycosylation and demise of mesangial cells in the diabetic glomerular mesangium. (Mol Cell Biochem 278: 165–175, 2005)  相似文献   

10.
11.
12.
13.
Mature dendritic cells (DCs) are crucial for the induction of adaptive immune responses and perturbed DC homeostasis can result in autoimmune disease. Either uncontrolled expansion or enhanced survival of DCs can result in a variety of autoimmune diseases in mouse models. In addition, increased maturation signals, through overexpression of surface Toll-like receptors (TLRs) or stimulation by type I interferon (IFN), has been associated with systemic autoimmunity. Whereas recent studies have focused on identifying factors required for initiating the maturation process, the possibility that resting DCs also express molecules that 'hold' them in an immature state has generally not been considered. Here we show that nuclear factor-κB1 (NF-κB1) is crucial for maintaining the resting state of DCs. Self-antigen-pulsed unstimulated DCs that do not express NF-κB1 were able to activate CD8(+) T lymphocytes and induce autoimmunity. We further show that NF-κB1 negatively regulates the spontaneous production of tumor necrosis factor-α (TNF-α), which is associated with increased granzyme B expression in cytotoxic T lymphocytes (CTLs). These findings provide a new perspective on functional DC maturation and a potential mechanism that may account for pathologic T cell activation.  相似文献   

14.
Integrin-extracellular matrix interactions are important determinants of beta cell behaviours. The β1 integrin is a well-known regulator of beta cell activities; however, little is known of its associated α subunits. In the present study, αβ1 integrin expression was examined in the rat insulinoma cell line (INS-1) to identify their role in beta cell survival and function. Seven α subunits associated with β1 integrin were identified, including α1-6 and αV. Among these heterodimers, α3β1 was most highly expressed. Common ligands for the α3β1 integrin, including fibronectin, laminin, collagen I and collagen IV were tested to identify the most suitable matrix for INS-1 cell proliferation and function. Cells exposed to collagen I and IV demonstrated significant increases in adhesion, spreading, cell viability, proliferation, and FAK phosphorylation when compared to cells cultured on fibronectin, laminin and controls. Integrin-dependent attachment also had a beneficial effect on beta cell function, increasing Pdx-1 and insulin gene and protein expression on collagens I and IV, in parallel with increased basal insulin release and enhanced insulin secretion upon high glucose challenge. Furthermore, functional blockade of α3β1 integrin decreased cell adhesion, spreading and viability on both collagens and reduced Pdx-1 and insulin expression, indicating that its interactions with collagen matrices are important for beta cell survival and function. These results demonstrate that specific αβ1 integrin-ECM interactions are critical regulators of INS-1 beta cell survival and function and will be important in designing optimal conditions for cell-based therapies for diabetes treatment.  相似文献   

15.
16.
The immune system has evolved to protect the host from invading pathogens and to maintain tissue homeostasis. Although the inflammatory process involving pathogens is well documented, the intrinsic compounds that initiate sterile inflammation and how its progression is mediated are still not clear. Because tissue injury is usually associated with ischemia and the accompanied hypoxia, the microenvironment of various pathologies involves anaerobic metabolites and products of necrotic cells. In the current study, we assessed in a comparative manner the role of IL-1α and IL-1β in the initiation and propagation of sterile inflammation induced by products of hypoxic cells. We found that following hypoxia, the precursor form of IL-1α, and not IL-1β, is upregulated and subsequently released from dying cells. Using an inflammation-monitoring system consisting of Matrigel mixed with supernatants of hypoxic cells, we noted accumulation of IL-1α in the initial phase, which correlated with the infiltration of neutrophils, and the expression of IL-1β correlated with later migration of macrophages. In addition, we were able to show that IL-1 molecules from cells transfected with either precursor IL-1α or mature IL-1β can recruit neutrophils or macrophages, respectively. Taken together, these data suggest that IL-1α, released from dying cells, initiates sterile inflammation by inducing recruitment of neutrophils, whereas IL-1β promotes the recruitment and retention of macrophages. Overall, our data provide new insight into the biology of IL-1 molecules as well as on the regulation of sterile inflammation.  相似文献   

17.
Protein kinase CK2 predominantly exists as a heterotetrameric holoenyzme consisting of two catalytic subunits (CK2α) and two non-catalytic subunits (CK2β). Early investigations which we review here had revealed the presence of two types of contacts between CK2α and CK2β: a primary interaction responsible for the stability of the CK2 holoenzyme and stimulatory for the catalytic activity, and a secondary interaction which is inhibitory and in which the acidic loop of CK2β associates with the basic stretch and the (p+1)-loop of CK2α. At the end of the last decade both types of interactions were assumed to occur within the same tetrameric complex. The CK2 holoenyzme structure, however, suggested that the secondary interactions must happen between different CK2 tetramers. Such a behaviour should lead to higher-ordered aggregates consistent with several previous reports about a distinct aggregation propensity of CK2. We demonstrate here that in the CK2 holoenzyme crystals contacts between different CK2 tetramers exists which provide structural details of the secondary CK2α/CK2β interactions. These mainly ionic interactions lead to trimeric rings of CK2 holoenzymes in the crystal. In these rings each CK2 tetramer possesses one CK2α subunit open for substrate binding and another one whose active site is blocked by a secondary contact with CK2β from a neighbouring tetramer. This observation fits to previous findings that salt-sensitive ring-like aggregates of CK2 holoenzymes can exist which possess significant catalytic activity. Furthermore it suggests that earlier ideas about a regulatory role of the enzyme’s aggregation propensity may be worth to be revitalised.  相似文献   

18.
The epithelial-mesenchymal transition (EMT) of renal epithelial cells (RTECs) has pivotal roles in the development of renal fibrosis. Although the interaction of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes and its ligand, intracellular adhesion molecule 1 (ICAM-1), plays essential roles in most inflammatory reactions, its pathogenetic role in the EMT of RTECs remains to be clarified. In the present study, we investigated the effect of the interaction of LFA-1 on peripheral blood mononuclear cells (PBMCs) and ICAM-1 on HK-2 cells after stimulation with TGF-β(1) on the EMT of RTECs. ICAM-1 was highly expressed in HK-2 cells. After TGF-β(1) stimulation, the chemokines CCL3 and CXCL12 increased on HK-2 cells. After co-culture of PBMCs and HK-2 cells pre-stimulated with TGF-β(1) (0.1 ng/ml) (HK-2-TGF-β(1) (0.1)), the expression of the active form of LFA-1 increased on PBMCs; however, total LFA-1 expression did not change. The expression of the active form of LFA-1 on PBMCs did not increase after co-culture with not CCL3 but CXCL12 knockdown HK-2-TGF-β(1) (0.1). The expression of epithelial cell junction markers (E-cadherin and occludin) further decreased and that of mesenchymal markers (vimentin and fibronectin) further increased in HK-2-TGF-β(1) (0.1) after co-culture with PBMCs for 24 hrs (HK-2-TGF-β(1) (0.1)-PBMCs). The phosphorylation of ERK 1/2 but not smad2 and smad3 increased in HK-2-TGF-β(1) (0.1)-PBMCs. The snail and slug signaling did not increase HK-2-TGF-β(1) (0.1)-PBMCs. Although the migration and invasion of HK-2 cells induced full EMT by a high dose (10.0 ng/ml) and long-term (72-96 hrs) TGF-β(1) stimulation increased, that of HK-2-TGF-β(1) (0.1)-PBMCs did not increase. These results suggested that HK-2 cells stimulated with TGF-β(1) induced conformational activation of LFA-1 on PBMCs by increased CXCL12. Then, the direct interaction of LFA-1 on PBMCs and ICAM-1 on HK-2 cells activated ERK1/2 signaling to accelerate the part of EMT of HK-2 cells induced by TGF-β(1).  相似文献   

19.
Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/β receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.  相似文献   

20.
At variance with protein kinases expressed by oncogenes, CK2 is endowed with constitutive activity under normal conditions, and no CK2 gain-of-function mutants are known. Its amount, however, is abnormally high in malignant cells where it appears to be implicated in many of the cell biology phenomena associated with cancer. These observations can be reconciled assuming that tumor cells develop an overdue reliance ("non-oncogene addiction") on abnormally high CK2 level. While the potential of this latter to generate an environment favorable to neoplasia is consistent with the global antiapoptotic and prosurvival role played by CK2, it is not clear what is determining accumulation of CK2 in cells "predisposed" to become malignant. Exploiting the apoptosis sensitive (S) or resistant (R) CEM cell model, characterized by sharply different CK2 levels, we have now correlated the level and degradation rate of CK2 to those of the chaperone proteins Hsp90 and Cdc37. We show in particular that persistence of high CK2 level in R-CEM, as opposed to S-CEM, is accompanied by the presence of an immunospecific form of Cdc37 not detectable in S-CEM and refractory to staurosporine-induced degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号