共查询到20条相似文献,搜索用时 15 毫秒
1.
The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2 总被引:2,自引:0,他引:2
Copeland SJ Green BJ Burchat S Papalia GA Banner D Copeland JW 《The Journal of biological chemistry》2007,282(41):30120-30130
Formins are multidomain proteins that regulate numerous cytoskeleton-dependent cellular processes. These effects are mediated by the presence of two regions of homology, formin homology 1 and FH2. The diaphanous-related formins (DRFs) are distinguished by the presence of interacting N- and C-terminal regulatory domains. The GTPase binding domain and diaphanous inhibitory domain (DID) are found in the N terminus and bind to the diaphanous autoregulatory domain (DAD) found in the C terminus. Adjacent to the DID is an N-terminal dimerization motif (DD) and coiled-coil region (CC). The N terminus of Dia1 is also proposed to contain a Rho-independent membrane-targeting motif. We undertook an extensive structure/function analysis of the mDia1 N terminus to further our understanding of its role in vivo. We show here that both DID and DD are required for efficient autoinhibition in the context of full-length mDia1 and that the DD of mDia1 and mDia2, like formin homology 2, mediates homo- but not heterodimerization with other DRF family members. In contrast, our results suggest that the DID/DAD interaction mediates heterodimerization of full-length mDia1 and mDia2 and that the auto-inhibited conformation of DRFs is oligomeric. In addition, we also show that the DD/CC region is required for the Rho-independent membrane targeting of the isolated N terminus. 相似文献
2.
3.
The phosphorylation state of an autoregulatory domain controls PACS-1-directed protein traffic 下载免费PDF全文
PACS-1 is a cytosolic sorting protein that directs the localization of membrane proteins in the trans-Golgi network (TGN)/endosomal system. PACS-1 connects the clathrin adaptor AP-1 to acidic cluster sorting motifs contained in the cytoplasmic domain of cargo proteins such as furin, the cation-independent mannose-6-phosphate receptor and in viral proteins such as human immunodeficiency virus type 1 Nef. Here we show that an acidic cluster on PACS-1, which is highly similar to acidic cluster sorting motifs on cargo molecules, acts as an autoregulatory domain that controls PACS-1-directed sorting. Biochemical studies show that Ser278 adjacent to the acidic cluster is phosphorylated by CK2 and dephosphorylated by PP2A. Phosphorylation of Ser278 by CK2 or a Ser278-->Asp mutation increased the interaction between PACS-1 and cargo, whereas a Ser278-->Ala substitution decreased this interaction. Moreover, the Ser278-->Ala mutation yields a dominant-negative PACS-1 molecule that selectively blocks retrieval of PACS-1-regulated cargo molecules to the TGN. These results suggest that coordinated signaling events regulate transport within the TGN/endosomal system through the phosphorylation state of both cargo and the sorting machinery. 相似文献
4.
Ishikawa K Mihara Y Shimba N Ohtsu N Kawasaki H Suzuki E Asano Y 《Protein engineering》2002,15(7):539-543
Escherichia blattae non-specific acid phosphatase (EB-NSAP) possesses a pyrophosphate-nucleoside phosphotransferase activity, which is C-5'-position selective. Current mutational and structural data were used to generate a mutant EB-NSAP for a potential industrial application as an effective and economical protein catalyst in synthesizing nucleotides from nucleosides. First, Gly74 and Ile153 were replaced by Asp and Thr, respectively, since the corresponding replacements in the homologous enzyme from Morganella morganii reduced the K(m) value for inosine and thus increased the productivity of 5'-IMP. We determined the crystal structure of G74D/I153T, which has a reduced K(m) value for inosine, as expected. The tertiary structure of G74D/I153T was virtually identical to that of the wild-type. In addition, neither of the introduced side chains of Asp74 and Thr153 is directly involved in the interaction with inosine in a hypothetical binding mode of inosine to EB-NSAP, although both residues are situated near a potential inosine-binding site. These findings suggested that a slight structural change caused by an amino acid replacement around the potential inosine-binding site could significantly reduce the K(m) value. Prompted by this hypothesis, we designed several mutations and introduced them to G74D/I153T, to decrease the K(m) value further. This strategy produced a S72F/G74D/I153T mutant with a 5.4-fold lower K(m) value and a 2.7-fold higher V(max) value as compared to the wild-type EB-NSAP. 相似文献
5.
Gaillard J Ramabhadran V Neumanne E Gurel P Blanchoin L Vantard M Higgs HN 《Molecular biology of the cell》2011,22(23):4575-4587
A number of cellular processes use both microtubules and actin filaments, but the molecular machinery linking these two cytoskeletal elements remains to be elucidated in detail. Formins are actin-binding proteins that have multiple effects on actin dynamics, and one formin, mDia2, has been shown to bind and stabilize microtubules through its formin homology 2 (FH2) domain. Here we show that three formins, INF2, mDia1, and mDia2, display important differences in their interactions with microtubules and actin. Constructs containing FH1, FH2, and C-terminal domains of all three formins bind microtubules with high affinity (K(d) < 100 nM). However, only mDia2 binds microtubules at 1:1 stoichiometry, with INF2 and mDia1 showing saturating binding at approximately 1:3 (formin dimer:tubulin dimer). INF2-FH1FH2C is a potent microtubule-bundling protein, an effect that results in a large reduction in catastrophe rate. In contrast, neither mDia1 nor mDia2 is a potent microtubule bundler. The C-termini of mDia2 and INF2 have different functions in microtubule interaction, with mDia2's C-terminus required for high-affinity binding and INF2's C-terminus required for bundling. mDia2's C-terminus directly binds microtubules with submicromolar affinity. These formins also differ in their abilities to bind actin and microtubules simultaneously. Microtubules strongly inhibit actin polymerization by mDia2, whereas they moderately inhibit mDia1 and have no effect on INF2. Conversely, actin monomers inhibit microtubule binding/bundling by INF2 but do not affect mDia1 or mDia2. These differences in interactions with microtubules and actin suggest differential function in cellular processes requiring both cytoskeletal elements. 相似文献
6.
Kobori N Waymire JC Haycock JW Clifton GL Dash PK 《The Journal of biological chemistry》2004,279(3):2182-2191
Although glial cell-line derived neurotrophic factor (GDNF) acts as a potent survival factor for dopaminergic neurons, it is not known whether GDNF can directly alter dopamine synthesis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for dopamine biosynthesis, and its activity is regulated by phosphorylation on three seryl residues: Ser-19, Ser-31, and Ser-40. Using a TH-expressing human neuroblastoma cell line and rat primary mesencephalic neuron cultures, the present study examined whether GDNF alters the phosphorylation of TH and whether these changes are accompanied by increased enzymatic activity. Exposure to GDNF did not alter the TH protein level in either neuroblastoma cells or in primary neurons. However, significant increases in the phosphorylation of Ser-31 and Ser-40 were detected within minutes of GDNF application in both cell types. Enhanced Ser-31 and Ser-40 phosphorylation was associated with increased TH activity but not dopamine synthesis in neuroblastoma cells, possibly because of the absence of l-aromatic amino acid decarboxylase activity in these cells. In contrast, increased phosphorylation of Ser-31 and Ser-40 was found to enhance dopamine synthesis in primary neurons. Pharmacological experiments show that Erk and protein kinase A phosphorylate Ser-31 and Ser-40, respectively, and that their inhibition blocked both TH phosphorylation and activity. Our results indicate that, in addition to its role as a survival factor for dopaminergic neurons, GDNF can directly increase dopamine synthesis. 相似文献
7.
Bartolini F Moseley JB Schmoranzer J Cassimeris L Goode BL Gundersen GG 《The Journal of cell biology》2008,181(3):523-536
A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity. 相似文献
8.
Francesca Bartolini Nagendran Ramalingam Gregg G. Gundersen 《Molecular biology of the cell》2012,23(20):4032-4040
In migrating fibroblasts, RhoA and its effector mDia1 regulate the selective stabilization of microtubules (MTs) polarized in the direction of migration. The conserved formin homology 2 domain of mDia1 is involved both in actin polymerization and MT stabilization, and the relationship between these two activities is unknown. We found that latrunculin A (LatA) and jasplakinolide, actin drugs that release mDia1 from actin filament barbed ends, stimulated stable MT formation in serum-starved fibroblasts and caused a redistribution of mDia1 onto MTs. Knockdown of mDia1 by small interfering RNA (siRNA) prevented stable MT induction by LatA, whereas blocking upstream Rho or integrin signaling had no effect. In search of physiological regulators of mDia1, we found that actin-capping protein induced stable MTs in an mDia1-dependent manner and inhibited the translocation of mDia on the ends of growing actin filaments. Knockdown of capping protein by siRNA reduced stable MT levels in proliferating cells and in starved cells stimulated with lysophosphatidic acid. These results show that actin-capping protein is a novel regulator of MT stability that functions by antagonizing mDia1 activity toward actin filaments and suggest a novel form of actin–MT cross-talk in which a single factor acts sequentially on actin and MTs. 相似文献
9.
10.
In a previous report we demonstrated protein kinase C (PKC)-mediated phosphorylation of the ligand-binding domain (LBD) of orphan nuclear receptor TR2. In this report, we provide the evidence of PKC-mediated phosphorylation of the DNA-binding domain (DBD) of TR2. Two PKC target sites were predicted within the DBD, at Ser-170 and Ser-185, but only Ser-185 was confirmed by MS. Phosphorylation of DBD facilitated DNA binding of the TR2 receptor and its recruiting of coactivator p300/CBP-associated factor (P/CAF). Ser-185 was required for DNA binding, whereas both Ser-170 and Ser-185 were necessary for receptor interaction with P/CAF. The P/CAF-interacting domain of TR2 was located in its DBD. A double mutant (Ser-170 and Ser-185) of TR2 significantly lowered the activation of its target gene RARbeta2. This study provides the first evidence for ligand-independent activation of TR2 orphan receptor through PTM at the DBD, which enhanced its DNA-binding ability and interaction with coactivator P/CAF. 相似文献
11.
12.
The dyneins are a family of microtubule motor proteins. The motor domain, which represents the C-terminal 2/3 of the dynein heavy chain, exhibits homology to the AAA family of ATPases. It consists of a ring of six related but divergent AAA+ units, with two substantial sized protruding projections, the stem, or tail, which anchors the protein to diverse subcellular sites, and the stalk, which binds microtubules. This article reviews recent efforts to probe the mechanism by which the dyneins produce force, and work from the authors' lab regarding long-range conformational regulation of dynein enzymatic activity. 相似文献
13.
14.
Enhancement of cellulase activity by clones selected from the combinatorial library of the cellulose-binding domain by cell surface engineering 总被引:3,自引:0,他引:3
Fukuda T Ishikawa T Ogawa M Shiraga S Kato M Suye S Ueda M 《Biotechnology progress》2006,22(4):933-938
To improve the cellulolytic activity of a yeast strain displaying endoglucanase IotaIota (EG II) from Trichoderma reesei, a combinatorial library of the cellulose-binding domain (CBD) of EG II was constructed by using cell surface engineering. When EG II degrades celluloses, CBD binds to cellulose, and its catalytic domain cleaves the glycosidic bonds of cellulose. CBD had a flat face, composed of five amino acids for binding. It was supposed that the three hydrophobic amino acid residues of the five amino acid residues were essential for binding to cellulose. Therefore, by improving the two remaining amino acid residues, construction of mutants with a combinatorial library of the two amino acids in CBD was carried out and binding ability and hydrolysis activity were measured. In the first screening by halo assay using the Congo Red staining method, about 200 of the 2000 colonies formed clear halos, and then five colonies with the clearest halos were finally selected. In the second screening, the binding ability of the five mutants to phosphoric acid-swollen Avicel was measured. In addition, the measurement of hydrolysis activity toward carboxymethylcellulose (CMC) using the screened mutants was carried out. As a result, the mutated EG II exhibiting higher binding ability (1.5-fold) had higher hydrolysis activity (1.3-fold) compared to the parent EG II-displaying yeast cell, demonstrating that CBD has confirmatively some effect on the cellulase activity through its binding ability of the enzyme to cellulose. 相似文献
15.
Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein, p67, has protection of eIF2alpha phosphorylation (POEP) activity, and this activity requires lysine-rich domains I and II of p67. Another unique acidic residue-rich domain is also present at the N-terminus of p67. In this study we analyzed the role of this acidic residue-rich domain in POEP activity. Our data revealed that constitutive expression of a mutant form of p67 (D6/2) in mammalian cells resulted in increased POEP activity, and this activity was partially inhibited when second-site alanine substitutions at the conserved amino acids D251, D262, E364, and E459 were introduced in the D6/2 mutant. In contrast, a similar mutation at the conserved H331 position did not show any effect on POEP activity. Individual alanine substitutions at the above conserved amino acids in wild-type p67 did not show any significant effect on POEP activity except the E459 position where alanine substitution caused approximately 50% increase in POEP activity as compared to the wild type. Although, the levels of endogenous p67 and p67-deglycosylase did not correlate with the POEP activity, we found that the D6/2 mutant of p67 was glycosylated at a higher level in mammalian cells as compared to wild-type p67. The increased POEP activity of the D6/2 mutant also correlated with the higher rate of overall protein synthesis in mammalian cells constitutively expressing this mutant form of p67. Taken together, these data suggest that the acidic residue-rich domain present at the N-terminus of p67 may have a negative role in POEP activity. 相似文献
16.
Juge-Aubry CE Hammar E Siegrist-Kaiser C Pernin A Takeshita A Chin WW Burger AG Meier CA 《The Journal of biological chemistry》1999,274(15):10505-10510
17.
The Mdm2 protein is the major regulator of the tumor suppressor protein p53. We show that the p53 protein associates both with the N-terminal and with the central domain of Mdm2. The central p53-binding site of Mdm2 encompasses amino acids 235-300. Binding of p53 to the central domain is significantly enhanced after phosphorylation of the central domain of Mdm2. The N-terminal and central domains of Mdm2 act synergistically in binding to p53. p53 mutants that have mutations in the tetramerization domain and that fail to oligomerize do not show such an enhancement of binding in the presence of the other binding site. 相似文献
18.
Alberts AS 《The Journal of biological chemistry》2001,276(4):2824-2830
Mammalian and fungal Diaphanous-related formin homology (DRF) proteins contain several regions of conserved sequence homology. These include an amino-terminal GTPase binding domain (GBD) that interacts with activated Rho family members and formin homology domains that mediate targeting or interactions with signaling kinases and actin-binding proteins. DRFs also contain a conserved Dia-autoregulatory domain (DAD) in their carboxyl termini that binds the GBD. The GBD is a bifunctional autoinhibitory domain that is regulated by activated Rho. Expression of the isolated DAD in cells causes actin fiber formation and stimulates serum response factor-regulated gene expression. Inhibitor experiments show that the effects of exogenous DAD expression are dependent upon cellular Dia proteins. Alanine substitution of DAD consensus residues that disrupt GBD binding also eliminate DAD biological activity. Thus, DAD expression activates nuclear signaling and actin remodeling by mimicking activated Rho and unlatching the autoinhibited state of the cellular complement of Dia proteins. 相似文献
19.
Vaillant DC Copeland SJ Davis C Thurston SF Abdennur N Copeland JW 《The Journal of biological chemistry》2008,283(48):33750-33762
Formin homology proteins are a highly conserved family of cytoskeletal remodeling proteins best known for their ability to induce the formation of long unbranched actin filaments. They accomplish this by nucleating the de novo polymerization of F-actin and also by acting as F-actin barbed end "leaky cappers" that allow filament elongation while antagonizing the function of capping proteins. More recently, it has been reported that the FH2 domains of FRL1 and mDia2 and the plant formin AFH1 are able to bind and bundle actin filaments via distinct mechanisms. We find that like FRL1, FRL2 and FRL3 are also able to bind and bundle actin filaments. In the case of FRL3, this activity is dependent upon a proximal DAD/WH2-like domain that is found C-terminal to the FH2 domain. In addition, we show that, like other Diaphanous-related formins, FRL3 activity is subject to autoregulation mediated by the interaction between its N-terminal DID and C-terminal DAD. In contrast, the DID and DAD of FRL2 also interact in vivo and in vitro but without inhibiting FRL2 activity. These data suggest that current models describing DID/DAD autoregulation via steric hindrance of FH2 activity must be revised. Finally, unlike other formins, we find that the FH2 and N-terminal dimerization domains of FRL2 and FRL3 are able to form hetero-oligomers. 相似文献
20.
Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation 总被引:13,自引:0,他引:13
Chang TS Jeong W Choi SY Yu S Kang SW Rhee SG 《The Journal of biological chemistry》2002,277(28):25370-25376
Hydrogen peroxide is implicated as an intracellular messenger in various cellular responses such as proliferation and differentiation. Peroxiredoxin (Prx) I is a member of the peroxiredoxin family of peroxidases and contains a consensus site (Thr(90)-Pro-Lys-Lys) for phosphorylation by cyclin-dependent kinases (CDKs). This protein has now been shown to be phosphorylated specifically on Thr(90) by several CDKs, including Cdc2, in vitro. Phosphorylation of Prx I on Thr(90) reduced the peroxidase activity of this protein by 80%. The phosphorylation of Prx I in HeLa cells was monitored with the use of antibodies specific for Prx I phosphorylated on Thr(90). Immunoblot analysis with these antibodies of HeLa cells arrested at various stages of the cell cycle revealed that Prx I phosphorylation occurs in parallel with the activation of Cdc2; Prx I phosphorylation was thus marked during mitosis but virtually undetectable during interphase. Furthermore, when Cdc2 expression was reduced by RNA interference with cognate small interfering RNAs, Prx I phosphorylation was not observed in the cells synchronized in mitotic phase. The cytosolic location of Prx I likely prevents its interaction with activated CDKs until after the breakdown of the nuclear envelope during mitosis, when Cdc2 is the CDK that is most active. Phosphorylation of Prx I on Thr(90) both in vitro and in vivo was blocked by roscovitine, an inhibitor of CDKs. These results suggest that Cdc2-mediated phosphorylation and inactivation of Prx I and the resulting intracellular accumulation of H(2)O(2) might be important for progression of the cell cycle. 相似文献