首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Besides their neuronal support functions, astrocytes are active partners in neuronal information processing. The typical territorial structure of astrocytes (the volume of neuropil occupied by a single astrocyte) is pivotal for many aspects of glia–neuron interactions.

Methods

Individual astrocyte territorial volumes are measured by Golgi impregnation, and astrocyte densities are determined by S100β immunolabeling. These data are compared with results from conventionally applied methods such as dye filling and determination of the density of astrocyte networks by biocytin loading. Finally, we implemented our new approach to investigate age-related changes in astrocyte territories in the cortex and hippocampus of 5- and 21-month-old mice.

Results

The data obtained by our simplified approach based on Golgi impregnation were compared to previously published dye filling experiments, and yielded remarkably comparable results regarding astrocyte territorial volumes. Moreover, we found that almost all coupled astrocytes (as indicated by biocytin loading) were immunopositive for S100β. A first application of this new experimental approach gives insight in age-dependent changes in astrocyte territorial volumes. They increased with age, while cell densities remained stable. In 5-month-old mice, the overlap factor was close to 1, revealing little or no interdigitation of astrocyte territories. However, in 21-month-old mice, the overlap factor was more than 2, suggesting that processes of adjacent astrocytes interdigitate.

Conclusion

Here we verified the usability of a simple, versatile method for assessing astrocyte territories and the overlap factor between adjacent territories. Second, we found that there is an age-related increase in territorial volumes of astrocytes that leads to loss of the strict organization in non-overlapping territories. Future studies should elucidate the physiological relevance of this adaptive reaction of astrocytes in the aging brain and the methods presented in this study might be a powerful tool to do so.  相似文献   

2.

Background

Self-injurious behavior (SIB) is a complex condition that exhibits a spectrum of abnormal neuropsychological and locomotor behaviors. Mechanisms for neuropathogenesis could include irregular immune activation, host soluble factors, and astrocyte dysfunction.

Methods

We examined the role of astrocytes as modulators of immune function in macaques with SIB. We measured changes in astrocyte morphology and function. Paraffin sections of frontal cortices from rhesus macaques identified with SIB were stained for glial fibrillary acidic protein (GFAP) and Toll-like receptor 2 (TLR2). Morphologic features of astrocytes were determined using computer-assisted camera lucida.

Results

There was atrophy of white matter astrocyte cell bodies, decreased arbor length in both white and gray matter astrocytes, and decreased bifurcations and tips on astrocytes in animals with SIB. This was combined with a five-fold increase in the proportion of astrocytes immunopositive for TLR2.

Conclusions

These results provide direct evidence that SIB induces immune activation of astrocytes concomitant with quantifiably different morphology.  相似文献   

3.

Background

Japanese encephalitis (JE) is a major cause of mortality and morbidity for which there is no treatment. In addition to direct viral cytopathology, the inflammatory response is postulated to contribute to the pathogenesis. Our goal was to determine the contribution of bystander effects and inflammatory mediators to neuronal cell death.

Methodology/Principal Findings

Material from a macaque model was used to characterize the inflammatory response and cytopathic effects of JE virus (JEV). Intranasal JEV infection induced a non-suppurative encephalitis, dominated by perivascular, infiltrates of mostly T cells, alongside endothelial cell activation, vascular damage and blood brain barrier (BBB) leakage; in the adjacent parenchyma there was macrophage infiltration, astrocyte and microglia activation. JEV antigen was mostly in neurons, but there was no correlation between intensity of viral infection and degree of inflammatory response. Apoptotic cell death occurred in both infected and non-infected neurons. Interferon-α, which is a microglial activator, was also expressed by both. Tumour Necrosis Factor-α, inducible nitric oxide synthase and nitrotyrosine were expressed by microglial cells, astrocytes and macrophages. The same cells expressed matrix metalloproteinase (MMP)-2 whilst MMP-9 was expressed by neurons.

Conclusions/Significance

The results are consistent with JEV inducing neuronal apoptotic death and release of cytokines that initiate microglial activation and release of pro-inflammatory and apoptotic mediators with subsequent apoptotic death of both infected and uninfected neurons. Activation of astrocytes, microglial and endothelial cells likely contributes to inflammatory cell recruitment and BBB breakdown. It appears that neuronal apoptotic death and activation of microglial cells and astrocytes play a crucial role in the pathogenesis of JE.  相似文献   

4.

Background

Down''s syndrome (DS) is the most common genetic cause of mental retardation. Reduced number and aberrant architecture of dendritic spines are common features of DS neuropathology. However, the mechanisms involved in DS spine alterations are not known. In addition to a relevant role in synapse formation and maintenance, astrocytes can regulate spine dynamics by releasing soluble factors or by physical contact with neurons. We have previously shown impaired mitochondrial function in DS astrocytes leading to metabolic alterations in protein processing and secretion. In this study, we investigated whether deficits in astrocyte function contribute to DS spine pathology.

Methodology/Principal Findings

Using a human astrocyte/rat hippocampal neuron coculture, we found that DS astrocytes are directly involved in the development of spine malformations and reduced synaptic density. We also show that thrombospondin 1 (TSP-1), an astrocyte-secreted protein, possesses a potent modulatory effect on spine number and morphology, and that both DS brains and DS astrocytes exhibit marked deficits in TSP-1 protein expression. Depletion of TSP-1 from normal astrocytes resulted in dramatic changes in spine morphology, while restoration of TSP-1 levels prevented DS astrocyte-mediated spine and synaptic alterations. Astrocyte cultures derived from TSP-1 KO mice exhibited similar deficits to support spine formation and structure than DS astrocytes.

Conclusions/Significance

These results indicate that human astrocytes promote spine and synapse formation, identify astrocyte dysfunction as a significant factor of spine and synaptic pathology in the DS brain, and provide a mechanistic rationale for the exploration of TSP-1-based therapies to treat spine and synaptic pathology in DS and other neurological conditions.  相似文献   

5.

Background

Sporadic Parkinson''s disease (PD) is a progressive neurodegenerative disorder with unknown cause, but it has been suggested that neuroinflammation may play a role in pathogenesis of the disease. Neuroinflammatory component in process of PD neurodegeneration was proposed by postmortem, epidemiological and animal model studies. However, it remains unclear how neuroinflammatory factors contribute to dopaminergic neuronal death in PD.

Findings

In this study, we analyzed the relationship among inducible nitric oxide synthase (iNOS)-derived NO, mitochondrial dysfunction and dopaminergic neurodegeneration to examine the possibility that microglial neuroinflammation may induce dopaminergic neuronal loss in the substantia nigra. Unilateral injection of lipopolysaccharide (LPS) into the striatum of rat was followed by immunocytochemical, histological, neurochemical and biochemical analyses. In addition, behavioral assessments including cylinder test and amphetamine-induced rotational behavior test were employed to validate ipsilateral damage to the dopamine nigrostriatal pathway. LPS injection caused progressive degeneration of the dopamine nigrostriatal system, which was accompanied by motor impairments including asymmetric usage of forelimbs and amphetamine-induced turning behavior in animals. Interestingly, some of the remaining nigral dopaminergic neurons had intracytoplasmic accumulation of α-synuclein and ubiquitin. Furthermore, defect in the mitochondrial respiratory chain, and extensive S-nitrosylation/nitration of mitochondrial complex I were detected prior to the dopaminergic neuronal loss. The mitochondrial injury was prevented by treatment with L-N6-(l-iminoethyl)-lysine, an iNOS inhibitor, suggesting that iNOS-derived NO is associated with the mitochondrial impairment.

Conclusions

These results implicate neuroinflammation-induced S-nitrosylation/nitration of mitochondrial complex I in mitochondrial malfunction and subsequent degeneration of the nigral dopamine neurons.  相似文献   

6.
7.

Introduction

In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.

Methods

Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.

Results

We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.

Discussion

This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain.  相似文献   

8.

Background

Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer’s disease (AD). AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs), surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S.

Methodology/Principal Findings

In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1) and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH)- and the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue.

Conclusion/Significance

Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study provides evidence that adult organotypic brain slice cultures from 7- to 10-month-old mice independently of the transgenic modification undergo slow programmed cell death, caused by a dysfunction of the neuronal repair systems.  相似文献   

9.
10.

Background

Vertebrate genomes undergo epigenetic reprogramming during development and disease. Emerging evidence suggests that DNA methylation plays a key role in cell fate determination in the retina. Despite extensive studies of the programmed cell death that occurs during retinal development and degeneration, little is known about how DNA methylation might regulate neuronal cell death in the retina.

Methods

The developing chicken retina and the rd1 and rhodopsin-GFP mouse models of retinal degeneration were used to investigate programmed cell death during retinal development and degeneration. Changes in DNA methylation were determined by immunohistochemistry using antibodies against 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC).

Results

Punctate patterns of hypermethylation paralleled patterns of caspase3-dependent apoptotic cell death previously reported to occur during development in the chicken retina. Degenerating rd1 mouse retinas, at time points corresponding to the peak of rod cell death, showed elevated signals for 5mC and 5hmC in photoreceptors throughout the retina, with the most intense staining observed in the peripheral retina. Hypermethylation of photoreceptors in rd1 mice was associated with TUNEL and PAR staining and appeared to be cCaspase3-independent. After peak rod degeneration, during the period of cone death, occasional hypermethylation was observed in the outer nuclear layer.

Conclusion

The finding that cell-specific increases of 5mC and 5hmC immunostaining are associated with the death of retinal neurons during both development and degeneration suggests that changes in DNA methylation may play a role in modulating gene expression during the process of retinal degeneration. During retinal development, hypermethylation of retinal neurons associates with classical caspase-dependent apoptosis as well as caspase-3 independent cell death, while hypermethylation in the rd1 mouse photoreceptors is primarily associated with caspase-3 independent programmed cell death. These findings suggest a previously unrecognized role for epigenetic mechanisms in the onset and/or progression of programed cell death in the retina.  相似文献   

11.
Recent evidence has been provided for astrocyte degeneration in experimental models of neurodegenerative insults associated with glutamate transport alteration. To determine whether astrocyte death can directly result from altered glutamate transport, we here investigated the effects of L-trans-pyrrolidine-2,4-dicarboxylate (PDC) on undifferentiated or differentiated cultured rat striatal astrocytes. PDC induced death of differentiated astrocytes without affecting undifferentiated astrocyte viability. Death of differentiated astrocytes was also triggered by another substrate inhibitor but not by blockers of glutamate transporters. The PDC-induced death was delayed and apoptotic, and death rate was dose and treatment duration-dependent. Although preceded by extracellular glutamate increase, this death was not mediated through glutamate receptor stimulation, as antagonists did not provide protection. It involves oxidative stress, as a decrease in glutathione contents and a dramatic raise in reactive oxygen species preceded cell loss, and as protection was provided by antioxidants. PDC induced a similar percentage of GSH depletion in the undifferentiated astrocytes, but only a slight increase in reactive oxygen species. Interestingly, undifferentiated astrocytes exhibited twofold higher basal GSH content compared with the differentiated ones, and depleting their GSH content was found to render them susceptible to PDC. Altogether, these data demonstrate that basal GSH content is a critical factor of astrocyte vulnerability to glutamate transport alteration with possible insights onto concurrent death of astrocytes and gliosis in neurodegenerative insults.  相似文献   

12.

Background

The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.

Methodology/Principal Findings

Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.

Conclusions/Significance

Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.  相似文献   

13.
14.

Purpose

To determine whether optic nerve head (ONH) astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA) donors compared to astrocytes from normal Caucasian American (CA) donors.

Methods

We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips) to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA) in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM). Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH) assay detected levels of intracellular GSH.

Results

Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01). The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion.

Conclusions

These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA.  相似文献   

15.

Background

Huntington''s disease (HD) is a polyglutamine-expanded related neurodegenerative disease. Despite the ubiquitous expression of expanded, polyQ-Huntingtin (ExpHtt) in the brain, striatal neurons present a higher susceptibility to the mutation. A commonly admitted hypothesis is that Dopaminergic inputs participate to this vulnerability. We previously showed that D2 receptor stimulation increased aggregate formation and neuronal death induced by ExpHtt in primary striatal neurons in culture, and chronic D2 antagonist treatment protects striatal dysfunctions induced by ExpHtt in a lentiviral-induced model system in vivo. The present work was designed to elucidate the signalling pathways involved, downstream D2 receptor (D2R) stimulation, in striatal vulnerability to ExpHtt.

Methodology/Principal Findings

Using primary striatal neurons in culture, transfected with a tagged-GFP version of human exon 1 ExpHtt, and siRNAs against D2R or D1R, we confirm that DA potentiates neuronal dysfunctions via D2R but not D1R stimulation. We demonstrate that D2 agonist treatment induces neuritic retraction and growth cone collapse in Htt- and ExpHtt expressing neurons. We then tested a possible involvement of the Rho/ROCK signalling pathway, which plays a key role in the dynamic of the cytoskeleton, in these processes. The pharmacological inhibitors of ROCK (Y27632 and Hydroxyfasudil), as well as siRNAs against ROCK-II, reversed D2-related effects on neuritic retraction and growth cone collapse. We show a coupling between D2 receptor stimulation and Rho activation, as well as hyperphosphorylation of Cofilin, a downstream effector of ROCK-II pathway. Importantly, D2 agonist-mediated potentiation of aggregate formation and neuronal death induced by ExpHtt, was totally reversed by Y27632 and Hydroxyfasudil and ROCK-II siRNAs.

Conclusions/Significance

Our data provide the first demonstration that D2R-induced vulnerability in HD is critically linked to the activation of the Rho/ROCK signalling pathway. The inclusion of Rho/ROCK inhibitors could be an interesting therapeutic option aimed at forestalling the onset of the disease.  相似文献   

16.

Background

Hepatitis C virus (HCV) genomes and proteins are present in human brain tissues although the impact of HIV/HCV co-infection on neuropathogenesis remains unclear. Herein, we investigate HCV infectivity and effects on neuronal survival and neuroinflammation in conjunction with HIV infection.

Methodology

Human microglia, astrocyte and neuron cultures were infected with cell culture-derived HCV or exposed to HCV core protein with or without HIV-1 infection or HIV-1 Viral Protein R (Vpr) exposure. Host immune gene expression and cell viability were measured. Patch-clamp studies of human neurons were performed in the presence or absence of HCV core protein. Neurobehavioral performance and neuropathology were examined in HIV-1 Vpr-transgenic mice in which stereotaxic intrastriatal implants of HCV core protein were performed.

Principal Findings

HCV-encoded RNA as well as HCV core and non-structural 3 (NS3) proteins were detectable in human microglia and astrocytes infected with HCV. HCV core protein exposure induced expression of pro-inflammatory cytokines including interleukin-1β, interleukin-6 and tumor necrosis factor-α in microglia (p<0.05) but not in astrocytes while increased chemokine (e.g. CXCL10 and interleukin-8) expression was observed in both microglia and astrocytes (p<0.05). HCV core protein modulated neuronal membrane currents and reduced both β-III-tubulin and lipidated LC3-II expression (p<0.05). Neurons exposed to supernatants from HCV core-activated microglia exhibited reduced β-III-tubulin expression (p<0.05). HCV core protein neurotoxicity and interleukin-6 induction were potentiated by HIV-1 Vpr protein (p<0.05). HIV-1 Vpr transgenic mice implanted with HCV core protein showed gliosis, reduced neuronal counts together with diminished LC3 immunoreactivity. HCV core-implanted animals displayed neurobehavioral deficits at days 7 and 14 post-implantation (p<0.05).

Conclusions

HCV core protein exposure caused neuronal injury through suppression of neuronal autophagy in addition to neuroimmune activation. The additive neurotoxic effects of HCV- and HIV-encoded proteins highlight extrahepatic mechanisms by which HCV infection worsens the disease course of HIV infection.  相似文献   

17.

Background

There are currently no widely accepted neuro-HIV small animal models. We wanted to validate the HIV-1 Transgenic rat (Tg) as an appropriate neuro-HIV model and then establish in vivo imaging biomarkers of neuropathology, within this model, using MR structural and diffusion tensor imaging (DTI).

Methods

Young and middle-aged Tg and control rats were imaged using MRI. A subset of middle-aged animals underwent longitudinal repeat imaging six months later. Total brain volume (TBV), ventricular volume (VV) and parenchymal volume (PV = TBV–VV) were measured. Fractional anisotropy (FA) and mean diffusivity (MD) values of the corpus callosum (CC) were calculated from DTI data.

Results

TBV and PV were smaller in Tg compared to control rats in young and middle-aged cohorts (p<0.0001). VV increased significantly (p = 0.005) over time in the longitudinal Tg cohort. There were lower FA (p<0.002) and higher MD (p<0.003) values in the CC of middle-aged Tg rats compared to age-matched controls. Longitudinally, MD significantly decreased over time in Tg rats (p<0.03) while it did not change significantly in the control cohort over the same period of time (p>0.05).

Conclusions

We detected brain volume loss in the Tg rat, probably due to astrocytic dysfunction/loss, loss of structural/axonal matrix and striatal neuronal loss as suggested by immunofluorescence. Increased MD and decreased FA in the CC probably reflect microstructural differences between the Tg and Control rats which could include increased extracellular space between white matter tracts, demyelination and axonal degeneration, among other pathologies. We believe that the Tg rat is an adequate model of neuropathology in HIV and that volumetric MR and DTI measures can be potentially used as biomarkers of disease progression.  相似文献   

18.

Background

The tumor microenvironment contains normal, non-neoplastic cells that may contribute to tumor growth and maintenance. Within PDGF-driven murine gliomas, tumor-associated astrocytes (TAAs) are a large component of the tumor microenvironment. The function of non-neoplastic astrocytes in the glioma microenvironment has not been fully elucidated; moreover, the differences between these astrocytes and normal astrocytes are unknown. We therefore sought to identify genes and pathways that are increased in TAAs relative to normal astrocytes and also to determine whether expression of these genes correlates with glioma behavior.

Methodology/Principal Findings

We compared the gene expression profiles of TAAs to normal astrocytes and found the Antigen Presentation Pathway to be significantly increased in TAAs. We then identified a gene signature for glioblastoma (GBM) TAAs and validated the expression of some of those genes within the tumor. We also show that TAAs are derived from the non-tumor, stromal environment, in contrast to the Olig2+ tumor cells that constitute the neoplastic elements in our model. Finally, we validate this GBM TAA signature in patients and show that a TAA-derived gene signature predicts survival specifically in the human proneural subtype of glioma.

Conclusions/Significance

Our data identifies unique gene expression patterns between populations of TAAs and suggests potential roles for stromal astrocytes within the glioma microenvironment. We show that certain stromal astrocytes in the tumor microenvironment express a GBM-specific gene signature and that the majority of these stromal astrocyte genes can predict survival in the human disease.  相似文献   

19.
20.

Background

In children born prematurely and those surviving cerebral ischemia there are white matter abnormalities that correlate with neurological dysfunction. Since this injury occurs in the immature brain, when the majority of subventricular zone (SVZ) cells generate white matter oligodendrocytes, we sought to study the effect this injury has on gliogenesis from the SVZ. We hypothesized that there is aberrant glial cell generation from the SVZ after neonatal hypoxia ischemia (H/I) that contributes to an increased astrogliogenesis with concomitant oligodendroglial insufficiency. Mechanistically we hypothesized that an increase in specific locally produced cytokines during recovery from injury were modifying the differentiation of glial progenitors towards astrocytes at the expense of the more developmentally-appropriate oligodendrocytes.

Methodology/Principal Finding

For these studies we used the Vannucci H/I rat model where P6 rats are subjected to unilateral common carotid ligation followed by 75 min of systemic hypoxia. Retroviral lineage tracing studies combined with morphological and immunohistochemical analyses revealed the preferential generation of SVZ-derived white matter astrocytes instead of oligodendrocytes post hypoxia/ischemia. Microarray and QRT-PCR analyses of the damaged SVZ showed increased expression of several cytokines and receptors that are known to promote astrocyte differentiation, such as EGF, LIF and TGFß signaling components. Using gliospheres to model the neonatal SVZ, we evaluated the effects of these cytokines on signal transduction pathways regulating astrocyte generation, proliferation and differentiation. These studies demonstrated that combinations of EGF, LIF and TGFß1 reconstituted the increased astrogliogenesis. TGFß1-induced Smad 2/3 phosphorylation and the combination of EGF, LIF and TGFß1 synergistically increased STAT3 phosphorylation over single or double cytokine combinations. Pharmacologically inhibiting ALK5 signaling in vitro antagonized the TGFß1-induced increase in astrocyte generation and antagonizing ALK5 signaling in vivo similarly inhibited astrogliogenesis within the SVZ during recovery from H/I.

Conclusion/Significance

Altogether, these data indicate that there is aberrant specification of glial precursors within the neonatal SVZ during recovery from neonatal H/I that is a consequence of altered cytokine signaling. Our studies further suggest that antagonizing the ALK5 receptor will restore the normal pattern of cell differentiation after injury to the immature brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号