首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In Vitro Cellular & Developmental Biology - Plant - Global demands for an in vitro culture of cannabis have never been more sought after as countries shift their paradigm towards legalization....  相似文献   

5.
Proteomics: a powerful tool in the post-genomic era   总被引:2,自引:0,他引:2  
Genomics is having a profound impact on biological research, including photosynthesis investigations. Genomes of many photosynthetic organisms have been sequenced. The information about ALL genes that govern and execute photoautotrophic metabolism provides many opportunities to understand genome function and details of known and uncharted pathways. Proteomics, analysis of the protein complement of the genome, is a powerful tool in understanding which proteins are present in a particular tissue under given conditions. Proteomics also allows us to estimate relative levels of proteins and to determine post-translational modifications of the gene products. In this minireview, we discuss the technology and its applications in plant sciences.  相似文献   

6.
SUMMARY: CytoModeler is an open-source Java application based on the Cytoscape platform. It integrates large-scale network analysis and quantitative modeling by combining omics analysis on the Cytoscape platform, access to deterministic and stochastic simulators, and static and dynamic network context visualizations of simulation results. AVAILABILITY: Implemented in Java, CytoModeler runs with Cytoscape 2.6 and 2.7. Binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv/cytomodeler/.  相似文献   

7.
8.
9.
Highly efficient phage-based Escherichia coli homologous recombination systems have recently been developed that enable genomic DNA in bacterial artificial chromosomes to be modified and subcloned, without the need for restriction enzymes or DNA ligases. This new form of chromosome engineering, termed recombinogenic engineering or recombineering, is efficient and greatly decreases the time it takes to create transgenic mouse models by traditional means. Recombineering also facilitates many kinds of genomic experiment that have otherwise been difficult to carry out, and should enhance functional genomic studies by providing better mouse models and a more refined genetic analysis of the mouse genome.  相似文献   

10.
11.
Coronalon: a powerful tool in plant stress physiology   总被引:16,自引:0,他引:16  
Coronalon, a synthetic 6-ethyl indanoyl isoleucine conjugate, has been designed as a highly active mimic of octadecanoid phytohormones that are involved in insect and disease resistance. The spectrum of biological activities that is affected by coronalon was investigated in nine different plant systems specifically responding to jasmonates and/or 12-oxo-phytodienoic acid. In all bioassays analyzed, coronalon demonstrated a general strong activity at low micromolar concentrations. The results obtained showed the induction of (i) defense-related secondary metabolite accumulation in both cell cultures and plant tissues, (ii) specific abiotic and biotic stress-related gene expression, and (iii) root growth retardation. The general activity of coronalon in the induction of plant stress responses together with its simple and efficient synthesis suggests that this compound might serve as a valuable tool in the examination of various aspects in plant stress physiology. Moreover, coronalon might become employed in agriculture to elicit plant resistance against various aggressors.  相似文献   

12.
13.
In social animals, fission is a common mode of group proliferation and dispersion and may be affected by genetic or other social factors. Sociality implies preserving relationships between group members. An increase in group size and/or in competition for food within the group can result in decrease certain social interactions between members, and the group may split irreversibly as a consequence. One individual may try to maintain bonds with a maximum of group members in order to keep group cohesion, i.e. proximity and stable relationships. However, this strategy needs time and time is often limited. In addition, previous studies have shown that whatever the group size, an individual interacts only with certain grooming partners. There, we develop a computational model to assess how dynamics of group cohesion are related to group size and to the structure of grooming relationships. Groups’ sizes after simulated fission are compared to observed sizes of 40 groups of primates. Results showed that the relationship between grooming time and group size is dependent on how each individual attributes grooming time to its social partners, i.e. grooming a few number of preferred partners or grooming equally or not all partners. The number of partners seemed to be more important for the group cohesion than the grooming time itself. This structural constraint has important consequences on group sociality, as it gives the possibility of competition for grooming partners, attraction for high-ranking individuals as found in primates’ groups. It could, however, also have implications when considering the cognitive capacities of primates.  相似文献   

14.
Plant transformation and regeneration systems have become indispensable parts of gene discovery and functional characterization over the last two decades. Adoption of transformation methods in studies of plant adaptation to natural environments has been slow. This is a result of poor genomic knowledge and inefficient transformation systems for species dominating terrestrial ecosystems, and logistical difficulties in conducting field tests of genetically engineered organisms. In trees, where long generation cycles, high background polymorphism, large sizes and outcrossing systems of mating make production of near-isogenic lines and large experiments difficult, transformation is an attractive alternative for establishing direct linkages between genes and adaptively significant phenotypes. Here, we outline the capabilities, challenges, and prospects for transformation to become a significant tool for studying the ecophysiological adaptation of trees to the environment. Focusing on poplars (genus Populus) as model system, we describe how transformation-based approaches can provide insights into the genes that control adaptive traits. The availability of the poplar genome sequence, along with its large expressed sequences tag (EST) databanks, facile transformation and rapid growth, enable reverse genetic approaches to be used to test virtually any hypothesis of gene function.  相似文献   

15.

Background  

Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype.  相似文献   

16.
Atomic force microscopy (AFM) has emerged as the only technique capable of real-time imaging of the surface of a living cell at nano-resolution. Since AFM provides the advantage of directly observing living biological cells in their native environment, this technique has found many applications in pharmacology, biotechnology, microbiology, structural and molecular biology, genetics and other biology-related fields. AFM has also proved to be a valuable tool for reproductive biologists. An exhaustive review on the various applications of AFM to sperm cells is presented. AFM has been extensively applied for determining the structural and topological features of spermatozoa. Unstained, unfixed spermatozoa in their natural physiological surroundings can be imaged by this technique which provides valuable information about the morphological and pathological defects in sperm cells as three-dimensional images with precise topographical details. Sperm head defects and the acrosome at the tip of the head responsible for fertilization, can be examined and correlated with the lack of functional integrity of the cell. Considerable amount of work is reported on the structural details of the highly condensed chromatin in sperm head using AFM. Detailed information on 3D topographical images of spermatozoa acquired by AFM is expected to provide a better understanding of various reproductive pathways which, in turn, can facilitate improved infertility management and/or contraceptive development.  相似文献   

17.
Understanding the function of membrane proteins is of fundamental importance due to their crucial roles in many cellular processes and their direct association with human disorders. However, their analysis poses a special challenge, largely due to their highly amphipathic nature. Until recently, analyses of proteomic samples mainly were performed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), due to the unprecedented separation power of the technique. However, in conventional 2D-PAGE membrane proteins are generally underrepresented due to their tendency to precipitate during isoelectric focusing and their inefficient transfer from the first to the second dimension. As a consequence, several other separation techniques, primarily based on liquid chromatography (LC), have been employed for analysis of this group of proteins. In the present study, different LC-based methods were compared for the analysis of crude protein extracts. One- and two-dimensional high-performance liquid chromatographic (1D- and 2D-HPLC) separations of brain protein tryptic digests with a predicted concentration range of up to 5 orders of magnitude were found to be insufficient, thus making a preceding fractionation step necessary. An additional protein separation step was introduced and a 3D-PAGE-HPLC analysis was performed. The results of these experiments are compared with results of 2D-PAGE/matrix-assisted laser desorption ionization mass spectrometric (MALDI MS) analyses of the same samples. Features, challenges, advantages, and disadvantages of the respective systems are discussed. The brain (mouse and human) was chosen as the analyzed tissue as it is of high interest in medical and pharmaceutical research into neurological diseases such as multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. The study is part of our ongoing research aimed at identifying new biomarkers for neurodegenerative diseases.  相似文献   

18.
19.
Theoretical models of animal contests frequently generate predictions about how asymmetries (e.g. differences in size, residence status) between contestants affect fight duration. Linear regression and nonparametric correlation analyses are commonly used to test the fit of data to such models. We show how survival regression analysis (SRA) is a powerful technique for studying the effect of asymmetries on the duration of contests. SRA, which is under-utilized by students of animal behaviour, offers several advantages over more frequently used procedures. It provides unbiased parameter estimates even when including censored data (i.e. results of contests that have not ended at the time when observations are stopped). The analysis of hazard functions, which is a component of SRA, is an easy way to test for consistency with predictions of the sequential assessment game model. These and other advantages of SRA are illustrated by using SRA and more conventional methods to analyse the effect of asymmetries on contest duration for encounters between female Mediterranean tarantulas, Lycosa tarentula (L.). It is hoped that this example of the advantages of SRA will encourage more widespread use of this powerful technique. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

20.
M C Malet-Martino  R Martino 《Biochimie》1992,74(9-10):785-800
Studies on the metabolism and disposition of drugs using nuclear magnetic resonance spectroscopy (MRS) as the analytical technique are reviewed. An overview of the main studies classed in terms of the observed magnetic nucleus (1H, 2H, 7Li, 13C, 19F, 31P, 77Se) is followed by some typical examples of the way in which 19F and 31P MRS can be profitably employed to gain more understanding about the metabolism and disposition of the anticancer fluoropyrimidines (5-fluorouracil (FU) and its prodrugs) and ifosfamide (IF). The results of three recent studies carried out in our laboratory are developed. They concern the direct quantitative monitoring of the hepatic metabolism of FU in the isolated perfused mouse liver, the elucidation of the origin of the cardiotoxicity of FU and the metabolism of IF from an analysis of biofluids of patients. Finally, the advantages and limitations of MRS for investigations on drug metabolism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号