首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The primary cultures of canine lens epithelial cells were transiently transfected with cDNAs for dog ferritin H- or L-chains in order to study differential expression of these chains. By using chain-specific antibodies, we determined that at 48 h after transfection overexpression of L-chain was much higher (9-fold over control) than that of H-chain (1.7-fold). We discovered that differentially transfected cells secrete overexpressed chains as homopolymeric ferritin into the media. Forty-eight hours after transfection accumulation of H-ferritin in the media was much higher (3-fold) than that of L-ferritin. This resulted in lowering of the concentration of H-chain in the cytosol. Co-transfection of cells with both H- and L-chain cDNAs increased the intracellular levels of H-chain and eliminated secretion of H-ferritin to the media. We concluded that lens epithelial cells differentially regulate concentration of both ferritin chains in the cytosol. The overexpressed L-chain accumulated in the cytosol as predominantly homopolymeric L-ferritin. This is in contrast to H-chain, which is removed to the media unless there is an L-chain available to form heteropolymeric ferritin. These data indicate that the inability of cells to more strictly control cytosolic levels of L-chain may augment its accumulation in lenses of humans with hereditary hyperferritinemia cataract syndrome, which is caused by overexpression of L-chain due to mutation in the regulatory element in the untranslated region of the mRNA of the chain.  相似文献   

2.
A congenital cataract present in guinea pigs provided a unique opportunity to study a hereditary lens disease at the molecular level. zeta-Crystallin, one of the most abundant guinea pig lens proteins, was found to be altered in the lens of cataractous animals. Several zeta-crystallin cDNA clones were isolated from a cataractous lens library and found to contain a 102-bp deletion towards the 3' end of the coding region. This deletion does not interfere with the reading frame but results in a protein 34 amino acids shorter. Sequence analysis of a normal genomic zeta-crystallin clone revealed that the missing 102-bp fragment corresponds to an entire exon (exon 7). PCR analysis of the genomic DNA isolated from cataractous animals showed that exon 7, though missing from the mRNA, is intact in the cataractous genome. Further sequence analysis of the zeta-crystallin gene disclosed a dinucleotide deletion of the universal AG at the acceptor splice-site of intron 6 of the mutant gene. The presence of this mutation results in the skipping of exon 7 during the mRNA processing which in turn results in the altered zeta-crystallin protein. This is the first time a genomic mutation in an enzyme/crystallin gene has been directly linked to a congenital cataract.  相似文献   

3.
A congenital cataract present in guinea pigs provided a unique opportunity to study a hereditary lens diseases at the molecular level. ζ-crystallin, one of the most abundant guinea pig lens proteins, was found to be altered in the lens of cataractous animals. Several ζ-crystallin cDNA clones were isolated from a cataractous lens library and found to contain a 102-bp deletion towards the 3′ end of the coding region. The deletion does not interfere with the reading frame but results in a protein 34 amino acids shorter. Sequence analysis of a normal genomic ζ-crystallin clone revealed that the missing 102-bp fragment corresponds to an entire exon (exon 7). PCR analysis of the genomic DNA isolated from cataractous animals showed that exon 7, though missing from the mRNA, is intact in the cataractous genome. Further sequence analysis of the α-crystallin gene disclosed a dinucleotide delection of the universal AG at the acceptor splice-site of intron 6 of the mutant gene. The presence of this mutation results in the skipping of exon 7 during the mRNA processing which in turn results in the altered ζ-crystallin protein. This if the first time a genomic mutation in an enzyme/crytallin gene has been directly linked to a congenital cataract.  相似文献   

4.
Interleukin-1 (IL-1 beta) increases the synthesis of both heavy and light (L)-ferritin subunits when added to human hepatoma cells (HepG2) grown in culture. RNase protection and Northern blot analysis with L-ferritin probes revealed that no changes in L-ferritin mRNA levels occur after cytokine stimulation. However, the induction coincides with an increased association of the L-subunit mRNA with polyribosomes. Since the recruitment of stored ferritin mRNA onto polyribosomes is seen when iron enters the cell, the effect of IL-1 beta on iron uptake was tested and was found to be unaffected by the lymphokine. Neither transferrin receptor mRNA levels nor the number of receptors displayed on the cell surface was affected by IL-1 beta. However, the action of the cytokine on ferritin translation is inhibited by the action of the intracellular iron chelator deferoxamine. These data indicate that IL-1 beta induces ferritin gene expression by translational control of its mRNA. The pathway of induction is different from iron-dependent ferritin gene expression whereas regulation requires the background presence of cellular iron.  相似文献   

5.
Andley UP  Hamilton PD  Ravi N 《Biochemistry》2008,47(36):9697-9706
AlphaA-crystallin is a small heat shock protein that functions as a molecular chaperone and a lens structural protein. The R49C single-point mutation in alphaA-crystallin causes hereditary human cataracts. We have previously investigated the in vivo properties of this mutant in a gene knock-in mouse model. Remarkably, homozygous mice carrying the alphaA-R49C mutant exhibit nearly complete lens opacity concurrent with small lenses and small eyes. Here we have investigated the 90 degrees light scattering, viscosity, refractive index, and bis-ANS fluorescence of lens proteins isolated from the alphaA-R49C mouse lenses and found that the concentration of total water-soluble proteins showed a pronounced decrease in alphaA-R49C homozygous lenses. Light scattering measurements on proteins separated by gel permeation chromatography showed a small amount of high-molecular mass aggregated material in the void volume which still remains soluble in alphaA-R49C homozygous lens homogenates. An increased level of binding of beta- and gamma-crystallin to the alpha-crystallin fraction was observed in alphaA-R49C heterozygous and homozygous lenses but not in wild-type lenses. Quantitative analysis with the hydrophobic fluorescence probe bis-ANS showed a pronounced increase in fluorescence yield upon binding to alpha-crystallin from mutant as compared with the wild-type lenses. These results suggest that the decrease in the solubility of the alphaA-R49C mutant protein was due to an increase in its hydrophobicity and supra-aggregation of alphaA-crystallin that leads to cataract formation. Our study further shows that analysis of mutant proteins from the mouse model is an effective way to understand the mechanism of protein insolubilization in hereditary cataracts.  相似文献   

6.
Recently, after the identification of ferritin light chain (L-ferritin) gene and protein over-expression in human metastatic melanoma cells, we engineered, starting from the LM metastatic melanoma cell line, clones in which L-ferritin gene expression was down-regulated by the stable expression of a specific antisense construct. The present investigation started from the observation that L-ferritin down-regulated LM cells displayed a less pigmented phenotype, confirmed by a major decrease of total melanin, when compared to control LM cells. This finding was accompanied by a dramatic decrease in tyrosinase activity, which was not paralleled by a concomitant reduction of the amount of tyrosinase specific mRNA. Western blot analysis of tyrosinase in control LM cells displayed a pattern, which corresponds to the progressive glycosylation of the native protein up to the 80 kDa form, considered the functional one. Tyrosinase pattern assayed in L-ferritin down-regulated LM cells showed the remarkable absence of the 80 kDa form and a prevalence of endoglycosidase H (endo H)-sensitive immature (70 kDa) tyrosinase, accumulated in the endoplasmic reticulum (ER), as confirmed by confocal microscopy analysis. These results demonstrate that, in a human metastatic melanoma cell line, the stress condition promoted by L-ferritin down-modulation, can substantially influence proper maturation of tyrosinase.  相似文献   

7.
8.
Zeta-crystallin, a major "taxon-specific" protein of the guinea pig lens, specifically binds NADPH. Analysis of pyridine nucleotide levels in guinea pig lens revealed values for NADPH approximately 50-fold higher than in other lenses. Indeed to our knowledge the values reported are higher than have been observed in any tissue. A clear correlation exists between NADPH and zeta-crystallin contents of the lens both in normal guinea pigs during development and in a line of guinea pigs with a mutation in the gene for zeta-crystallin. Heterozygotes for this mutation had a 50% reduction in NADPH, while homozygotes have only about 6% of the normal level. NADP+ levels were also markedly elevated suggesting that redox cycling of the NADPH is occurring.  相似文献   

9.
zeta-Crystallin is a taxon-specific crystallin found in the eye lens of guinea pig and other hystricomorph rodents and camelids. It is an NADPH:quinone oxidoreductase and is also present in low amounts in other tissues where it might act as a detoxifying enzyme. A lens-specific promoter confers lens-specific expression of the gene in high amounts where it is speculated to play a structural role in maintaining the transparency of the lens ensemble. A deletion mutation leads to autosomal dominant congenital cataract and also results in the loss of NADPH binding. In order to perform structural studies with the protein with an aim to delineate the cause of cataract in these mutant guinea pigs, recombinant zeta-crystallin was cloned and expressed in Escherichia coli. The overexpression of the protein in E. coli resulted in a major fraction of it partitioning into inclusion bodies. The co-overexpression of the bacterial chaperone system GroEL/ES along with zeta-crystallin could significantly enhance the yield of soluble protein. Active zeta-crystallin could then be purified from the E. coli using Mono Q anion exchange FPLC and was found to be identical to the native zeta-crystallin isolated from the guinea pig lens with respect to size, spectral properties, and activity.  相似文献   

10.
11.
Chromatographic evidence supporting the similarity of the yellow chromophores isolated from aged human and brunescent cataract lenses and calf lens proteins ascorbylated in vitro is presented. The water-insoluble fraction from early stage brunescent cataract lenses was solubilized by sonication (WISS) and digested with a battery of proteolytic enzymes under argon to prevent oxidation. Also, calf lens proteins were incubated with ascorbic acid for 4 weeks in air and submitted to the same digestion. The percent hydrolysis of the proteins to amino acids was approximately 90% in every case. The content of yellow chromophores was 90, 130 and 250 A(330) units/g protein for normal human WISS, cataract WISS and ascorbate-modified bovine lens proteins respectively. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column. Six peaks were obtained for both preparations and pooled. Side by side thin-layer chromatography (TLC) of each peak showed very similar R(f) values for the long wavelength-absorbing fluorophores. Glycation with [U-(14)C]ascorbic acid, followed by digestion and Bio-Gel P-2 chromatography, showed that the incorporated radioactivity co-eluted with the A(330)-absorbing peaks, and that most of the fluorescent bands were labeled after TLC. Peaks 2 and 3 from the P-2 were further fractionated by preparative Prodigy C-18 reversed-phase high-performance liquid chromatography. Two major A(330)-absorbing peaks were seen in peak 2 isolated from human cataract lenses and 5 peaks in fraction 3, all of which eluted at the same retention times as those from ascorbic acid glycated calf lens proteins. HPLC fractionation of P-2 peaks 4, 5 and 6 showed many A(330)-absorbing peaks from the cataract WISS, only some of which were identical to the asorbylated proteins. The major fluorophores, however, were present in both preparations. These data provide new evidence to support the hypothesis that the yellow chromophores in brunescent lenses represent advanced glycation endproducts (AGEs) probably due to ascorbic acid glycation in vivo.  相似文献   

12.
We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude that the majority of the major modified amino acids present in early stage brunescent Indian cataract lens proteins appear to arise as a result of ascorbic acid modification, and are presumably advanced glycation end-products.  相似文献   

13.
Oxidative damage to lens proteins and glutathione depletion play a major role in the development of senile cataract. We previously found that a deficiency in gamma-cystathionase activity may be responsible for glutathione depletion in old lenses. The aims of this study were: (1) to investigate the mechanism that causes the age-related deficiency in gamma-cystathionase activity in the eye lens, and (2) to determine the role of gamma-cystathionase deficiency in cataractogenesis. Two populations of old rats were found, one (56%) whose lenses lacked gamma-cystathionase activity and the rest that exhibited detectable enzyme activity. gamma-Cystathionase protein was absent in lenses from old rats without gamma-cystathionase activity. Oxidative stress targeted gamma-cystathionase in the eye lens upon aging, since the enzyme contained more carbonyl groups in old lenses than in young ones. gamma-Cystathionase mRNA was also markedly reduced in old lenses, thus contributing to the age-associated deficiency in gamma-cystathionase. Inhibition of gamma-cystathionase activity caused glutathione depletion in lenses and led to cataractogenesis in vitro. In conclusion, the lack of gamma-cystathionase activity in over 50% of old lenses is due to decreased gene expression and proteolytic degradation of the oxidized enzyme. This results in a high risk for the development of senile cataract.  相似文献   

14.
Simvastatin rapidly induced cataracts in young Chbb:Thom (CT) but not Sprague Dawley (SD) or Hilltop Wistar (HW) rats. Oral treatment for 14 but not 7 days committed CT rat lenses to cataract formation. The cholesterol to phospholipid molar ratio in lenses of treated CT rats was unchanged. Differences between strains in serum and ocular humor levels of simvastatin acid poorly correlated with susceptibility to cataracts. No significant differences were found between rat strains in the capacity of simvastatin acid to inhibit lens-basal sterol synthesis. Prolonged treatment with simvastatin comparably elevated HMG-CoA reductase protein and enzyme activity in lenses of both cataract resistant and sensitive strains. However, in contrast to SD and HW rats, where sterol synthesis was markedly increased, sterol synthesis in CT rat lenses remained at baseline. Discordant expression of sterol synthesis in CT rats may be due to inadequate upregulation of lens HMG-CoA synthase. HMG-CoA synthase protein levels, and to a much lesser extent mRNA levels, increased in lens cortex of SD but not CT rats. Because upregulation of the sterol pathway may result in increased formation of isoprene-derived anti-inflammatory substances, failure to upregulate the pathway in CT rat lenses may reflect an attenuated compensatory response to injury that resulted in cataracts.  相似文献   

15.
alphaA-crystallin (Cryaa/HSPB4) is a small heat shock protein and molecular chaperone that prevents nonspecific aggregation of denaturing proteins. Several point mutations in the alphaA-crystallin gene cause congenital human cataracts by unknown mechanisms. We took a novel approach to investigate the molecular mechanism of cataract formation in vivo by creating gene knock-in mice expressing the arginine 49 to cysteine mutation (R49C) in alphaA-crystallin (alphaA-R49C). This mutation has been linked with autosomal dominant hereditary cataracts in a four-generation Caucasian family. Homologous recombination in embryonic stem cells was performed using a plasmid containing the C to T transition in exon 1 of the cryaa gene. alphaA-R49C heterozygosity led to early cataracts characterized by nuclear opacities. Unexpectedly, alphaA-R49C homozygosity led to small eye phenotype and severe cataracts at birth. Wild type littermates did not show these abnormalities. Lens fiber cells of alphaA-R49C homozygous mice displayed an increase in cell death by apoptosis mediated by a 5-fold decrease in phosphorylated Bad, an anti-apoptotic protein, but an increase in Bcl-2 expression. However, proliferation measured by in vivo bromodeoxyuridine labeling did not decline. The alphaA-R49C heterozygous and homozygous knock-in lenses demonstrated an increase in insoluble alphaA-crystallin and alphaB-crystallin and a surprising increase in expression of cytoplasmic gamma-crystallin, whereas no changes in beta-crystallin were observed. Co-immunoprecipitation analysis showed increased interaction between alphaA-crystallin and lens substrate proteins in the heterozygous knock-in lenses. To our knowledge this is the first knock-in mouse model for a crystallin mutation causing hereditary human cataract and establishes that alphaA-R49C promotes protein insolubility and cell death in vivo.  相似文献   

16.
Our previous studies have demonstrated that lens epithelial damage by excessive nitric oxide causes an elevation in lens opacification in UPL rats, and it has been reported that interferon-gamma production in lens epithelial cells is involved in cataract development. In this study, we investigated the involvement of interleukin (IL)-18, which leads to interferon-gamma, in UPL rat lenses. The opacification of UPL rat lenses starts at 39 days of age. The gene expression levels causing IL-18 activation (IL-18, IL-18 receptor and caspase-1) are increased at 32 days of age, and the expression of mature IL-18 protein in the UPL rat lenses also increases with ageing. On the other hand, the interferon-gamma levels in UPL rat lenses are increased, and the increase in interferon-gamma levels in UPL rat lenses reaches a maximum at 39 days of age. Mature IL-18 expression and interferon-gamma production are achieved prior to the onset of lens opacification. In conclusion, the expression levels of IL-18 in the lenses of UPL rats are increased with aging. In addition, interferon-gamma levels in the lenses of UPL rats are also increased. It is possible that interferon-gamma generated by the activated IL-18 may induce cataract development in UPL rats.  相似文献   

17.
Localization of neutral and acidic glycosphingolipids in rat lens   总被引:2,自引:2,他引:0  
Rat lens was found to contain several neutral and acidic glycosphingolipidsin lens epithelia, cortex and nucleus, and showed developmentalchanges in their content and localization. TLC-immunostainingof gangliosides revealed the enrichment of some ganglio-seriesgangliosides (GM3, GM1, GD3 and GD1b) in lens epithelia andthe presence of GM3 and GD3 in the lens nucleus. Immunohistochemicalstudies confirmed the distribution of GM3 and GM1 in anteriorlens epithelial cells and the cortex, with expression decreasingtoward the lens nucleus. Immunoreaction to GD3 was more intensein the lens nucleus than in epithelial cells. In contrast, theexpression of neolacto-series glycosphingolipids was restrictedto the lens nucleus. In order to investigate the pathologicalchanges of glycosphingolipids in cataract, galactose-inducedcataractous lenses were examined. However, no significant changeswere observed in the content and composition of glycosphingolipids.In addition, Lewisx epitopes found in human cataractous lenseswere not detected in the cataractous lenses of galactosaemicrats and hereditary cataractous Emory mice. cataract gangliosides glcosphingolipids Lewisx rat lens  相似文献   

18.
19.
The accumulation of crystallin fragments in vivo and their subsequent interaction with crystallins are responsible, in part, for protein aggregation in cataracts. Transgenic mice overexpressing acylpeptide hydrolase (APH) specifically in the lens were prepared to test the role of protease in the generation and accumulation of peptides. Cataract development was seen at various postnatal days in the majority of mice expressing active APH (wt-APH). Cataract onset and severity of the cataracts correlated with the APH protein levels. Lens opacity occurred when APH protein levels were >2.6% of the total lens protein and the specific activity, assayed using Ac-Ala-p-nitroanilide substrate, was >1 unit. Transgenic mice carrying inactive APH (mt-APH) did not develop cataract. Cataract development also correlated with N-terminal cleavage of the APH to generate a 57-kDa protein, along with an increased accumulation of low molecular weight (LMW) peptides, similar to those found in aging human and cataract lenses. Nontransgenic mouse lens proteins incubated with purified wt-APH in vitro resulted in a >20% increase in LMW peptides. Crystallin modifications and cleavage were quite dramatic in transgenic mouse lenses with mature cataract. Affected lenses showed capsule rupture at the posterior pole, with expulsion of the lens nucleus and degenerating fiber cells. Our study suggests that the cleaved APH fragment might exert catalytic activity against crystallins, resulting in the accumulation of distinct LMW peptides that promote protein aggregation in lenses expressing wt-APH. The APH transgenic model we developed will enable in vivo testing of the roles of crystallin fragments in protein aggregation.  相似文献   

20.
Summary. In order to investigate the relationship between lens opacities and the various modifications of lens proteins, we analyzed and compared the properties of lens proteins of 85-day old normal Wistar rats and the hereditary cataract model, ICR/f rats. The present study identified many differences between normal and mutant lens proteins. In the ICR/f mutant rats, the relative amounts of gamma-crystallin decreased and high molecular weight (HMW) protein increased. Racemization and isomerization of Asp-151 of alpha A-crystallin was observed in the mutant ICR/f rats, and Met-1 of alpha A-crystallin was oxidized to methionine sulfoxide. These modifications were not found in the age-matched normal rats. These tendencies are consistent with aged and cataractous human lenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号