首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used the polymerase chain reaction (PCR) technique to search the Drosophila melanogaster genome for the presence of sequences with homology to mammalian and yeast centromeric DNA. Using primers based on the human CENP-B box present in α-satellite DNA and part of the Saccharomyces cerevisiae CDEIII centromeric sequence, a number of specific DNA fragments were amplified from total genomic DNA. In situ hybridization to polytene and mitotic chromosomes showed these fragments to localise to centromeric and pericentromeric regions. Direct cloning of the amplified fragments into conventional plasmids proved unsuccessful. However, a recombinant P1 clone containing D. melanogaster genomic DNA that supports PCR amplification by the primers was identified. Molecular characterisation of this clone revealed a DNA fragment that localises primarily to the centromere of chromosome 2. Sequence analysis indicated that this fragment contains at least four different repeats, including Rsp, transposable elements, Bari-1 and a new AT-rich repeated sequence that we have designated Porto-1. Detailed fluorescence in situ hybridization analysis shows that Porto-1 is localised very close to the primary constriction of chromosome 2. Sequence analysis suggests that this repeat was specifically amplified by our primers, although limited homology to the CENP-B box or CDEIII elements was found. In situ hybridization to a number of Drosophila species shows Porto-1 to be present only in D. melanogaster. Received: 13 April 1996; in revised form: 25 June 1996 / Accepted: 6 July 1996  相似文献   

2.
According to published accounts, prothymosin α exhibits high evolutionary conservation from yeast to man (Makarova, T., Grebenshikov, N., Egorov, C., Vartapetian, A., and Bogdanov, A.FEBS Lett.257, 247–250, 1989). We report here our failure to find evidence for prothymosin α in yeast using three biochemical approaches: hybridization of yeast mRNA and genomic DNA with human prothymosin α coding region probes, performance of the polymerase chain reaction with yeast genomic template DNA and three sets of primers recognizing human prothymosin α coding region sequences, and isolation of yeast proteins essentially as described in the publication above. A survey of theSaccharomyces cerevisiaecomplete genome database using the program BLASTp verified our findings: there is no prothymosin α-homologue in yeast. Furthermore, DNA representing organisms from bacteria to amphibians also failed to hybridize with the same probes. Therefore, the presence of a prothymosin α gene in animals other than mammals is highly unlikely.  相似文献   

3.
A short protocol was developed that allows the rapid isolation of any knownSaccharomyces cerevisiae gene. Two known genes,APN1 andIMP2, were isolated directly from whole cells of yeast using polymerase chain reaction, without the need for purified template genomic DNA.  相似文献   

4.
Genetic relatedness of 14 yeast strains and 2 mold strains was studied by the DNA-DNA hybridization method. The hybridization was performed between mitochondrial-DNA-free, 32p-labeled DNA of Saccharomyces cerevisiae IAM 4009 and cold DNA of other strains. The DNA homology indices deviated considerably even among S. cerevisiae strains having similar GC contents, but, in general, yeast strains known to be able to mate with S. cerevisiae, showed high homology indices (35∽70%). Other species of Saccharomycetaceae and 6 asporogenous yeast strains exhibited values of 10∽20%. The relatedness suggested from these results was confirmed by the competition experiments and also by the hybridization with 32P-DNA of Candida pulcherrima IFO 0561. DNA’s of Aspergillus oryzae I and Neurospora crassa IFO 6067 also exhibited low but appreciable homology indices (5∽7%). These results were discussed from the aspects of phylogenetics and also of gene conservation in microorganisms.  相似文献   

5.
We report here a sensitive and specific polymerase chain reaction (PCR) detection assay for the pathogenic Candida yeast based on the novel LYS1 [encoding saccharopine dehydrogenase (SDH)] and LYS5 [encoding phosphopantetheinyl transferase (PPTase)] gene sequences of the fungal unique lysine biosynthetic pathway. Both LYS1 and LYS5 DNA-specific PCR primers SG1, SG2 and SG3, SG4, respectively, amplified predicted 483 and 648-bp fragments from Candida albicans genomic DNA but not from other selected fungal, bacterial, or human DNA. The 18S rDNA control primers exhibited positive amplifications in all PCR assays. The LYS1-and LYS5-specific primers strongly amplified C. albicans and Candida tropicalis target sequences; however, the LYS1 primers also weakly amplified fragments from Candida kefyr and Candida lusitaniae DNA. Both sets of primers amplified target sequences from less than 10 pg of serially diluted C. albicans DNA, and the LYS1 specific primers also detected DNA isolated from serially diluted 50 C. albicans cells. The PCR primers reported here are sufficiently sensitive and specific for the potential early detection of Candida infections with no possibility of false positive results from cross-contamination with bacterial or human DNA.  相似文献   

6.
Summary The pathogenic yeast, Candida albicans, is insensitive to the anti-mitotic drug, benomyl, and to the dihydrofolate reductase inhibitor, methotrexate. Genes responsible for the intrinsic drug resistance were sought by transforming Saccharomyces cerevisiae, a yeast sensitive to both drugs, with genomic C. albicans libraries and screening on benomyl or methotrexate. Restriction analysis of plasmids isolated from benomyl- and methotrexate-resistant colonies indicated that both phenotypes were encoded by the same DNA fragment. Sequence analysis showed that the fragments were nearly identical and contained a long open reading frame of 1694 bp (ORF1) and a small ORF of 446 bp (ORF2) within ORF1 on the opposite strand. By site-directed mutagenesis, it was shown that ORF1 encoded both phenotypes. The protein had no sequence similarity to any known proteins, including -tubulin, dihydrofolate reductase, and the P-glycoprotein of the multi-drug resistance family. The resistance gene was detected in several C. albicans strains and in C. stellatoidea by DNA hybridization and by the polymerase chain reaction.  相似文献   

7.
Summary Candida krusei is a harmful contaminant in baker's yeast manufacture, because it grows much faster than Saccharomyces cerevisiae under production conditions. This investigation showed that C. krusei utilizes the ethanol produced by baker's yeast as sole carbon source when molasses is used as a substrate. When the alcohol concentration in the effluent air is used as a parameter for controlling the aeration of the culture, conditions become favourable for the dominance of wild yeast because some of the ethanol produced by the baker's yeast is consumed immediately by C. krusei and aeration is then automatically reduced, leading to increased growth of the wild yeast.  相似文献   

8.
9.
The Candida albicans CaENG1 gene encoding an endo-1,3-β-glucanase was cloned by screening a genomic library with a DNA probe obtained by polymerase chain reaction using synthetic oligonucleotides designed according to conserved regions found between two Saccharomyces cerevisiae endo-1,3-β-glucanases (Eng1p and Eng2p). The gene contains a 3435-bp open reading frame (ORF), capable of encoding a protein of 1145 amino acids (124,157 Da), that contains no introns. Comparison of the ScEng1p sequence with partial C. albicans genomic sequences revealed the presence of a second protein with sequence similarity (the product of the Ca20C1.22c ORF, which was named CaENG2). Disruption of the CaENG1 gene in C. albicans had no dramatic effects on the growth rate of the strains, but it resulted in the formation of chains of cells, suggesting that the protein is involved in cell separation. Expression of CaENG1 in S. cerevisiae cells afforded a 12-fold increase in the 1,3-β-glucanase activity detected in culture supernatants, showing that the protein has similar enzymatic activity to that of the S. cerevisiae Eng1p. In addition, when the C. albicans protein was expressed under its native promoter in S. cerevisiae eng1 mutant cells, it was able to complement the separation defect of this mutant, indicating that these two proteins are true functional homologues.  相似文献   

10.
We obtained a microsatellite‐enriched genomic library isolated from the tissue of a single columbine (Aquilegia sp.) plant taken from a southwestern USA natural population. The primers developed for these microsatellite loci performed consistently in polymerase chain reactions and yielded multiallelic genotypes with relatively high observed heterozygosities. We describe polymerase chain reaction primers and conditions to amplify 16 unique, codominant di‐, tri‐ and tetra‐nucleotide microsatellite DNA loci so that other population biology researchers using columbine natural populations as a model system may benefit.  相似文献   

11.
The aim of this study was to enable the polymerase chain reaction (PCR) amplification of DNA fragments within endoglucanase gene(s) of Torula thermophila, by using degenerate primers so that the amplified fragment(s) could be used as homologous probe(s) for cloning of full-length endoglucanase gene(s). The design of the degenerate PCR primers was mainly based on the endoglucanase sequences of other fungi. The endoglucanase gene sequence of Humicola insolens was the only sequence from a thermophilic fungus publicly available in the literature. Therefore, the endoglucanase sequences of the two Trichoderma species, Trichoderma reesei and Trichoderma longibrachiatum, were used to generalize the primers. PCR amplification of T. thermophila genomic DNA with these primers resilied in a specific amplification. The specificity of the amplified fragment was shown by Southern hybridization analysis using egl3 gene of T. reesei as probe. This result suggested that the degenerate primers used in this study may be of value for studies aimed at cloning of endoglucanase genes from a range of related fungi.  相似文献   

12.
Abstract 1 A simple, yet sensitive polymerase chain reaction based technique was developed for the detection of the apple‐grass aphid Rhopalosiphum insertum in the gut of Anystis baccarum, a predatory mite. 2 A range of conserved polymerase chain reaction primers for insect mitochondrial and ribosomal DNA were tested in order to amplify R. insertum DNA. The mitochondrial DNA primers LrRNAR2 + N1F1, amplified a region between the ND1 and large subunit RNA genes. 3 DNA sequencing of the R. insertum ND1‐LRNA polymerase chain reaction product allowed aphid‐specific polymerase chain reaction primers to be designed. These amplified a 283‐bp product from individual aphids. No polymerase chain reaction product was amplified from individual A. baccarum. 4 Using the aphid‐specific primers against A. baccarum fed on R. insertum, the diagnostic 283‐bp product was amplified. 5 Two restriction enzymes (RsaI and AluI) produced patterns that allowed unambiguous identification of R. insertum DNA from that of Macrosiphum euphorbiae and Myzus persicae.  相似文献   

13.
The alcohol dehydrogenase gene (ADH1) of Candida utilis ATCC9950 was cloned and expressed in recombinant Escherichia coli. C. utilis ADH1 was obtained by PCR amplification of C. utilis genomic DNA using two degenerate primers. Amino acid sequence analysis of C. utilis ADH1 indicated that it contained a zinc-binding consensus region and a NAD(P)+-binding site, and lacked a mitochondrial targeting peptide. It has a 98 and 73% identity with ADH1s of C. albicans and Saccharomyces cerevisiae, respectively. Amino acid sequence analysis and enzyme characterization with various aliphatic and branched alcohols suggested that C. utilis ADH1 might be a primary alcohol dehydrogenase existing in the cytoplasm and requiring zinc ion and NAD(P)+ for reaction.  相似文献   

14.
For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers.  相似文献   

15.
Inteins (internal proteins) are self‐splicing transportable genetic elements present in conserved regions of housekeeping genes. The study highlights the importance of intein as a potential diagnostic marker for species‐specific identification of Candida tropicalis, a rapidly emerging opportunistic human pathogen. Initial steps of primer validation, sequence alignment, phylogenetic tree analysis, gel electrophoresis and real‐time polymerase chain reaction (PCR) assays were performed to confirm the specificity of the designed primers. The primers were selective for C. tropicalis with 100% inclusivity and showed no cross‐species or cross‐genera matches. The established technique is a prototype for developing multifaceted PCR assays and for point‐of‐care testing in near future.

Significance and Impact of the Study

Development of molecular markers for specific detection of microbial pathogens using real‐time polymerase chain reaction (PCR) is an appealing and challenging technique. A real‐time PCR is an emerging technology frequently used to detect the aetiologic agents. In recent times, designing species‐specific primers for pathogen detection is gaining momentum. The method offers rapid, accurate and cost‐effective strategy to identify the target, thus providing sufficient time to instigate appropriate chemotherapy. The study highlights the use of intein DNA sequence as molecular markers for species‐specific identification of Candida tropicalis. The study also offers a prototype model for developing multifaceted PCR assays using intein DNA sequences, and provides a developmental starting point for point‐of‐care testing in near future.  相似文献   

16.
A simple subtractive hybridization was applied for cloning of Polymyxa graminis deoxyribonucleic acid (DNA). Total DNA preparations from concentrated P. graminis resting spores and from roots of non‐infested (healthy) barley were digested with different restriction enzymes and batch hybridized, followed by cloning in a plasmid vector. Sequencing and blast analysis of coincidentally selected clones enabled construction of polymerase chain reaction primers specific to P. graminis DNA. Four Polymyxa‐specific primers showed different affinities to DNA of type I and type II P. graminis and to DNA of P. betae.  相似文献   

17.
Y. An  J. Ji  W. Wu  A. Lv  R. Huang  Z. Xiu 《Molecular Biology》2006,40(3):486-492
We describe a new approach to in vitro DNA recombination termed the Separate-Mixing method in this study. The reaction process of this method consists of two stages: at the first stage the reaction was implemented in two parallel teams, which generated random recombination by template-switching of growing poly-nucleotides from primers in the presence of unidirectional single-stranded DNA fragments used as templates, and then both teams were mixed together for further extension and recombination of DNA sequences at the second stage. Due to this particular strategy, the reaction process was also accompanied by two other processes of DNA shuffling and StEP simultaneously. Two AdoMet synthetase genes, sam2 from Saccharomyces cerevisiae and metK from Escherichia coli, which have only 56% homology on the DNA level, were used for recombination with the Separate-Mixing method. DNA recombination was available after a single round of reaction. When 10 randomly selected recombinants were sequenced, an unshuffled parental clone was not found, nor was unexpected insertion, deletion, or rearrangement detected. An evolved gene, sam’, was obtained after screening and selection, which could obviously increase the accumulation of AdoMet in S. cerevisiae. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 3, pp. 546–553. This article was submitted by the authors in English.  相似文献   

18.
Summary Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA.  相似文献   

19.
Phytase-active yeasts from grain-based food and beer   总被引:1,自引:0,他引:1  
Aims: To screen yeast strains isolated from grain‐based food and beer for phytase activity to identify high phytase‐active strains. Methods and Results: The screening of phytase‐positive strains was carried out at conditions optimal for leavening of bread dough (pH 5·5 and 30°C), in order to identify strains that could be used for the baking industry. Two growth‐based tests were used for the initial testing of phytase‐active strains. Tested strains belonged to six species: Saccharomyces cerevisiae, Saccharomyces pastorianus, Saccharomyces bayanus, Kazachstania exigua (former name Saccharomyces exiguus), Candida krusei (teleomorph Issachenkia orientalis) and Arxula adeninivorans. On the basis of initial testing results, 14 strains were selected for the further determination of extracellular and intracellular (cytoplasmic and/or cell‐wall bound) phytase activities. The most prominent strains for extracellular phytase production were found to be S. pastorianus KVL008 (a lager beer strain), followed by S. cerevisiae KVL015 (an ale beer strain) and C. krusei P2 (isolated from sorghum beer). Intracellular phytase activities were relatively low in all tested strains. Conclusions: Herein, for the first time, beer‐related strains of S. pastorianus and S. cerevisiae are reported as phytase‐positive strains. Significance and Impact of the Study: The high level of extracellular phytase activity by the strains mentioned previously suggests them to be strains for the production of wholemeal bread with high content of bioavailable minerals.  相似文献   

20.
Pyruvate carboxylase is an important anaplerotic enzyme replenishing oxaloacetate consumed for biosynthesis during growth, or lysine and glutamic acid production in industrial fermentations. We used regions of homology from pyruvate carboxylase sequences of 12 different species (corresponding to the ATP- and pyruvate-binding sites), to design polymerase chain reaction (PCR) primers for amplifying a fragment of the pyruvate carboxylase (pc) gene from C. glutamicum genomic DNA. This 850-base-pair fragment was used to probe a C. glutamicum cosmid library and four candidate pc cosmids were identified. The fragment was sequenced and the sequence of the complete gene was obtained by several rounds of primer synthesis, PCR on one of the positive cosmids, and sequencing. The C. glutamicumpc sequence shows 64% homology with the pc gene of Mycobacterium tuberculosis and 44% homology with the human pc gene. Regions of ATP, pyruvate and biotin binding have also been identified. Received: 16 December 1997 / Received revision: 31 March 1998 / Accepted: 19 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号