首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemagglutinin of the Rostock strain of fowl plague virus was expressed in CV-1 cells by a simian virus 40 vector, and its stability in the exocytotic transport process was examined by a fusion assay. A 50-fold increase in the fusion activity of the hemagglutinin was observed when expression occurred in the presence of ammonium chloride, Tris-HCl, or high doses of amantadine. When chloroquine, another acidotropic agent, was used, the hemagglutinin exposed at the cell surface had to be activated by trypsin, because intracellular cleavage was inhibited by this compound. Hemagglutinin mutants resistant to intracellular cleavage did not require acidotropic agents for full expression of fusion activity, when treated with trypsin after arrival at the cell surface. These results indicate that fowl plague virus hemagglutinin expressed by a simian virus 40 vector is denatured in the acidic milieu of the exocytotic pathway and that cleavage is a major factor responsible for the pH instability. Coexpression with the M2 protein also markedly enhanced the fusion activity of the hemagglutinin, and this effect was inhibited by low doses of amantadine. These results support the concept that M2, known to have ion channel function, protects the hemagglutinin from denaturation by raising the pH in the exocytotic transport system. The data also stress the importance of acidotropic agents or coexpressed M2 for the structural and functional integrity of vector-expressed hemagglutinin.  相似文献   

2.
Membrane vesicles, bearing only the influenza viral hemagglutinin glycoprotein, were reconstituted following solubilization of intact virions with Triton X-100. The viral hemagglutinin glycoprotein was separated from the neuraminidase glycoprotein by agarose sulfanilic acid column. The hemagglutinin glycoprotein obtained was homogenous in gel electrophoresis and devoid of any neuraminidase activity. A quantitative determination revealed that the hemolytic activity of the hemagglutinin vesicles was comparable to that of intact virions. Incubation of fluorescently labeled hemagglutinin vesicles with human erythrocyte ghosts (HEG) or with liposomes composed of phosphatidylcholine/cholesterol or phosphatidylcholine/cholesterol/gangliosides, at pH 5.0 but not at pH 7.4, resulted in fluorescence dequenching. Very little, if any, fluorescence dequenching was observed upon incubation of fluorescently labeled HA vesicles with neuraminidase or glutaraldehyde-treated HEG or with liposomes composed only of phosphatidylcholine. Hemagglutinin vesicles were rendered non-hemolytic by treatment with NH2OH or glutaraldehyde or by incubation at 85 degrees C or low pH. No fluorescence dequenching was observed following incubation of non-hemolytic hemagglutinin vesicles with HEG or liposomes. These results clearly suggest that the fluorescence dequenching observed is due to fusion between the hemagglutinin vesicles and the recipient membranes. Incubation of hemagglutinin vesicles with living cultured cells, i.e. mouse lymphoma S-49 cells, at pH 5.0 as well as at pH 7.4, also resulted in fluorescence dequenching. The fluorescence dequenching observed at pH 7.4 was inhibited by lysosomotropic agents (methylamine and ammonium chloride) as well as by EDTA and NaN3, indicating that it is due to fusion of hemagglutinin vesicles taken into the cells by endocytosis.  相似文献   

3.
Ng TB  Ngai PH  Xia L 《Mycologia》2006,98(2):167-171
A hemagglutinin with a molecular mass of 12 kDa was isolated from the fruiting bodies of the mushroom Flammulina velutipes. Its molecular mass is similar to that of the fungal immunomodulatory protein isolated from F. velutipes (FIP-fve) with ice-cold 5% acetic acid and 50 mM 2-mercaptoethanol as extraction medium and to that of the larger 12 kDa subunit of F. velutipes lectin isolated with phosphate buffer as extraction medium. Its hemagglutinating activity cannot be inhibited by a variety of carbohydrates tested. The activity is stable between pH 4 and pH 11. Loss in activity occurred when the temperature is raised to 60 C and 70 C. Activity is indiscernible at and above 80 C. Its N-terminal sequence shows differences from that of FIP-fve. F. velutipes hemagglutinin stimulates [3H-methyl] thymidine uptake by mouse splenocytes. It inhibits proliferation of leukemia L1210 cells with an IC50 of 13 microM.  相似文献   

4.
Phosphate entry into chloride-loaded human erythrocytes is inhibited by treatment of cells with the water-soluble carbodiimide 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) in the absence of added nucleophile. EAC does not penetrate the erythrocyte membrane or lead to significant intermolecular cross-linking of membrane proteins. At neutral extracellular pH in chloride-free medium, only about 50% of transport is rapidly and irreversibly inhibited, but at alkaline pH, inhibition is more rapid and complete. Inhibition by EAC was reversible in the presence of extracellular NaCl. Modification of membrane sulfhydryl groups does not prevent inhibition of phosphate transport by EAC but almost complete protection is afforded by 4,4-dinitrostilbene-2,2-disulfonic acid, a reversible competitive inhibitor of anion transport. N-(4-Azido-2-nitrophenyl)-2-aminoethylsulfonate, a reversible noncompetitive inhibitor of anion transport did not protect against EAC inhibition of transport but prevented reversal of inhibition in saline medium. Transport inhibition by [3H]EAC did not lead to specific incorporation of radioactivity into Band 3, the anion transport protein. These results suggest that inhibition of anion transport by EAC is due to modification of a carboxylic acid residue in or near the transport site accessible from the external face of the membrane. The subsequent fate of the modified carboxyl residue appears to be sensitive to the orientation of the anion transport site.  相似文献   

5.
We investigated the effects of diphenyleneiodonium (DPI) on superoxide production by complex I in mitochondria isolated from rat skeletal muscle. Superoxide production was measured indirectly as hydrogen peroxide production. In a conventional medium containing chloride, DPI strongly inhibited superoxide production by complex I driven by reverse electron transport from succinate. In principle, this inhibition could be explained by an observed decrease in the mitochondrial pH gradient caused by the known chloride-hydroxide antiport activity of DPI. In a medium containing gluconate instead of chloride, DPI did not affect the pH gradient. In this gluconate medium, DPI still inhibited superoxide production driven by reverse electron transport, showing that the inhibition of superoxide production was not dependent on changes in the pH gradient. It had no effect on superoxide production during forward electron transport from NAD-linked substrates in the presence of rotenone (to maximise superoxide production from the flavin of complex I) or antimycin (to maximise superoxide production from complex III), suggesting that the effects of DPI were not through inhibition of the flavin. We conclude that DPI has the novel and potentially very useful ability to prevent superoxide production from the site in complex I that is active during reverse electron transport, without affecting superoxide production during forward electron transport.  相似文献   

6.
We investigated the effects of diphenyleneiodonium (DPI) on superoxide production by complex I in mitochondria isolated from rat skeletal muscle. Superoxide production was measured indirectly as hydrogen peroxide production. In a conventional medium containing chloride, DPI strongly inhibited superoxide production by complex I driven by reverse electron transport from succinate. In principle, this inhibition could be explained by an observed decrease in the mitochondrial pH gradient caused by the known chloride-hydroxide antiport activity of DPI. In a medium containing gluconate instead of chloride, DPI did not affect the pH gradient. In this gluconate medium, DPI still inhibited superoxide production driven by reverse electron transport, showing that the inhibition of superoxide production was not dependent on changes in the pH gradient. It had no effect on superoxide production during forward electron transport from NAD-linked substrates in the presence of rotenone (to maximise superoxide production from the flavin of complex I) or antimycin (to maximise superoxide production from complex III), suggesting that the effects of DPI were not through inhibition of the flavin. We conclude that DPI has the novel and potentially very useful ability to prevent superoxide production from the site in complex I that is active during reverse electron transport, without affecting superoxide production during forward electron transport.  相似文献   

7.
The uptake of 9-aminoacridine is studied in the yeast Saccharomyces cerevisiae by fluorescence and absorbance measurements of the dye. Uptake of the dye proceeds via two pathways. One pathway consists of a diffusion of the non-protonated form. At high pH (7.5) this pathway is the predominant one, and the dye distributes between the cell inner and the medium according to the ratio of the proton concentrations in the two compartments. In other words, at high pH 9-aminoacridine behaves as a probe of the H+ gradient across the yeast cell membrane. At low external pH (4.5) a second pathway is involved. Much greater accumulation ratios for the dye are observed than can be accounted for by the H+ gradient across the membrane. The transport system predominantly responsible for the great accumulation of the dye appears to be inducible, to require metabolic energy and to be saturable. This transport system is competitively inhibited by thiamine, and also by dibenzyldimethylammonium and thiaminedisulfide, two specific inhibitors of the thiamine carrier in the yeast. On the other hand, the thiamine uptake by the yeast cells is competitively inhibited by 9-aminoacridine. In addition, uptake of 9-aminoacridine is greatly reduced in the thiamine transport-negative mutant of S. cerevisiae, PT-R2. It is concluded that at low pH 9-aminoacridine is taken up by yeast via the thiamine carrier of the cell and that, consequently, the dye may be applied as a probe of this transport system.  相似文献   

8.
Intestinal transport of [3H] folate was studied using everted sacs of rat jejunum. The proximal small intestine transports folate against a concentration gradient by a system which is saturable, pH-dependent, energy-dependent, sodium-dependent, sensitive to temperature, and appears to be a common transport system for folate compounds. Chromatographic analysis of folate compounds in the serosal compartment after a 60 min incubation with folate in the mucosal medium in sodium phosohate buffer indicated that metabolism of folate to 5-methyltetrahydrofolate was extensive at pH 6.0 and negligible at pH 7.5. The percent conversion of folate to 5-methyltetrahydrofolate at pH 6.0 was reduced by increasing the concentration of folate in the mucosal medium, thus indicating saturation of the reduction and methylation process. These findings indicate that folate transport in rat jejunum occurs by an energy-dependent, carried-mediated system and that both folate transport and intestinal conversion of folate to 5-methyltetrahydrofolate are pH-dependent.  相似文献   

9.
Intestinal transport of [3H]folate was studied using everted sacs of rat jejunum. The proximal small intestine transports folate against a concentration gradient by a system which is saturable, pH-dependent, energy-dependent, sodium-dependent, sensitive to temperature, and appears to be a common transport system for folate' compounds. Chromatographic analysis of folate compounds in the serosal compartment after a 60 min incubation with folate in the mucosal medium in sodium phosohate buffer indicated that metabolism of folate to 5-methyltetrahydrofolate was extensive at pH 6.0 and negligible at pH 7.5. The percent conversion of folate to 5-methyltetrahydrofolate at pH 6.0 was reduced by increasing the concentration of folate in the mucosal medium, thus indicating saturation of the reduction and methylation process. These findings indicate that folate transport in rat jejunum occurs by an energy-dependent, carried-mediated system and that both folate transport and intestinal conversion of folate to 5-methyltetrahydrofolate are pH-dependent.  相似文献   

10.
Two different components seem to participate in the uptake of nitrite by the cyanobacterium Anacystis nidulans, namely a transport system sensitive to N,N′-dicyclohexylcarbodiimide and a passive influx. The relative contribution of each component depended on the pH of the medium, that of the active system being prevalent at high pH values. The active transport of nitrite appears to be mediated by a high-affinity system, whereas the affinity for nitrite of the passive system is lower, similar to that of nitrite reductase. The utilization of nitrite was inhibited by products of the assimilation of ammonium via glutamine synthetase, apparently acting at the level of the active component involved in nitrite uptake.  相似文献   

11.
Characteristics of Chloride Transport in Human Red Blood Cells   总被引:28,自引:17,他引:11       下载免费PDF全文
The efflux of chloride-36 from human erythrocytes under steady-state conditions is a saturable process that is competitively inhibited by bicarbonate and noncompetitively inhibited by acetate. This chloride self-exchange flux is reversibly dependent on the pH of the medium between 5.7 and 9.6 with a maximum flux at pH 7.8. The increase in chloride flux between pH 5.7 and 7.8 is inexplicable by the fixed charge hypothesis. The interpretations are made that chloride transport in human erythrocytes is carrier mediated, that bicarbonate utilizes the same transport mechanism, and that the mechanism can be titrated with hydrogen ions into less functional forms for chloride transport.  相似文献   

12.
Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes   总被引:1,自引:0,他引:1  
Dipeptide transport was studied in chicken enterocytes and its properties compared with those of Na+-dependent sugar transport. Results showed that 1) isolated cells were capable of accumulating glycylsarcosine (Gly-Sar) against a concentration gradient (2.5- to 3.0-fold accumulation). This uptake was maximal at pH 6.0, and it was inhibited by Na+-free medium and by ouabain; 2) uptake of Gly-Sar was not affected by methionine and was competitively inhibited by carnosine, with a Ki of 12 mM; 3) the protonophore FCCP inhibited both Gly-Sar and 3-oxy-methyl-D-glucose (3-OMG) uptake by the cells; 4) amiloride, a well-known inhibitor of the Na+/H+ exchanger system stimulated 3-OMG uptake and inhibited Gly-Sar uptake, its effects being greater at pH 7.4; 5) and monensin prevents the effects of amiloride on both sugar and dipeptide uptake. In summary, Gly-Sar uptake depends on extracellular Na+ in an indirect manner via its effect on H+ efflux, and it appears to be dependent on an inward H+ gradient.  相似文献   

13.
In the infectious entry pathway of influenza virus, the low pH of the endosomal compartment induces an irreversible conformational change in influenza virus hemagglutinin, leading to fusion of viral and endosomal membranes. In the current report, we characterized the low-pH-induced activation of hemagglutinin of influenza strain X31 by studying its interaction with a lipid monolayer. The surface activities of virions, of isolated hemagglutinins and its proteolytic fragments, and of a synthetic peptide mimicking the amino terminus of subunit 2 of hemagglutinin are compared. The data indicate that the surface activity of both virions and isolated hemagglutinin develop as a result of the low-pH-induced conformational change in hemagglutinin. The surface activity of isolated hemagglutinin is mainly caused by penetration into the lipid monolayer of protein domains other than the amino terminus of subunit 2 of hemagglutinin; domains in subunit 1 may be involved. The surface activity of virions appears to be a secondary effect of the conformational change and is explained by assuming a net transfer of viral lipids to the lipid monolayer.  相似文献   

14.
We used nigericin, a K+/H+ exchanger, to test whether glucose transport in 3T3-L1 adipocytes was modulated by changes in intracellular pH. Our results showed that nigericin increased basal but decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner. Whereas the basal translocation of GLUT1 was enhanced, insulin-stimulated GLUT4 translocation was inhibited by nigericin. On the other hand, the total amount of neither transporter protein was altered. The finding that insulin-stimulated phosphoinositide 3-kinase (PI 3-kinase) activity was not affected by nigericin implies that nigericin exerted its inhibition at a step downstream of PI 3-kinase activation. At maximal dose, nigericin rapidly lowered cytosolic pH to 6.7; however, this effect was transient and cytosolic pH was back to normal in 20 min. Removal of nigericin from the incubation medium after 20 min abolished its enhancing effect on basal but had little influence on its inhibition of insulin-stimulated glucose transport. Moreover, lowering cytosolic pH to 6.7 with an exogenously added HCl solution had no effect on glucose transport. Taken together, it appears that nigericin may inhibit insulin-stimulated glucose transport mainly by interfering with GLUT4 translocation, probably by a mechanism not related to changes in cytosolic pH.  相似文献   

15.
Chloride exchange in resealed human erythrocyte ghosts can be irreversibly inhibited with phenylglyoxal, a reagent specific for the modification of arginyl residues in proteins. Phenylglyoxal inhibits anion transport in two distinct ways. At 0 degrees C, inhibition is instantaneous and fully reversible, whereas at higher temperature in an alkaline extracellular medium, covalent binding of phenylglyoxal leads to an irreversible inhibition of the transport membranes system. Indiscriminate modification of membrane arginyl residues was prevented by reacting the with phenylglyoxal in an alkaline extracellular medium while maintaining intracellular pH near neutrality. The rate of modification of anion transport depends on phenylglyoxal concentration, pH, temperature, and the presence of anions and reversible inhibitors of the anion transport system in fashions that are fully compatible with the conclusion that phenylglyoxal modifies arginyl residues that are essential for anion binding and translocation. Phenylglyoxal reacts rapidly with the deprotonated form of the reactive groups. It is proposed that the effects of anions and of negatively charged transport inhibitors on the rate of irreversible binding of phenylglyoxal are related to the effects of the anions on a positive interfacial potential. This potential determines the local pH, and thereby the concentration of deprotonated groups, in an exofacial region of the anion transport protein.  相似文献   

16.
Many sorting stations along the biosynthetic and endocytic pathways are acidified, suggesting a role for pH regulation in protein traffic. However, the function of acidification in individual compartments has been difficult to examine because global pH perturbants affect all acidified organelles in the cell and also have numerous side effects. To circumvent this problem, we have developed a method to selectively perturb the pH of a subset of acidified compartments. We infected HeLa cells with a recombinant adenovirus encoding influenza virus M2 protein (an acid-activated ion channel that dissipates proton gradients across membranes) and measured the effects on various steps in protein transport. At low multiplicity of infection (m.o.i.), delivery of influenza hemagglutinin from the trans-Golgi network to the cell surface was blocked, but there was almost no effect on the rate of recycling of internalized transferrin. At higher m.o.i., transferrin recycling was inhibited, suggesting increased accumulation of M2 in endosomes. Interestingly, even at the higher m.o.i., M2 expression had no effect on lysosome morphology or on EGF degradation, suggesting that lysosomal pH was not compromised by M2 expression. However, delivery of newly synthesized cathepsin D to lysosomes was slowed in cells expressing active M2, suggesting that acidification of the TGN and endosomes is important for efficient delivery of lysosomal hydrolases. Fluorescence labeling using a pH-sensitive dye confirmed the reversible effect of M2 on the pH of a subset of acidified compartments in the cell. The ability to dissect the role of acidification in individual steps of a complex pathway should be useful for numerous other studies on protein processing and transport.  相似文献   

17.
Mutants ts1 and ts227 of fowl plague virus have a temperature-sensitive defect in the transport of the hemagglutinin from the rough endoplasmic reticulum to the Golgi apparatus. The primary structure of the hemagglutinin of the mutants and of a number of revertants derived from them has been analysed by nucleotide sequencing. The transport block of the hemagglutinin of ts227 can be attributed to a single amino acid exchange. It involves the replacement of aspartic acid at position 457 by asparagine thereby introducing a new glycosylation site which appears to be located in a cryptic position in the lower part of the hemagglutinin stalk. Attachment of carbohydrate to this site is temperature-dependent. At permissive temperature only a small fraction of the monomers (approximately 30%) is glycosylated in this position, whereas at nonpermissive temperature this is the case with all subunits. The data suggest that under the latter conditions the new oligosaccharide interferes by steric hindrance with the trimerization of the hemagglutinin. The hemagglutinin of ts1 has an essential amino acid exchange at position 275 where serine is replaced by glycine. This substitution may increase the flexibility of the molecule in the hinge region between the globular domain and the stalk. The exchange of a conserved glutamic acid residue at position 398 that is involved in the interaction between different monomers contributes also to the structural instability of the ts1 hemagglutinin. These observations support the notion that the transport of the hemagglutinin from the rough endoplasmic reticulum to the Golgi apparatus depends on trimer assembly.  相似文献   

18.
Barnea caridida oocytes release acid (1.35 pmole H+/oocyte) upon fertilization. After artificial activation by an excess of KCl, germinal vesicle breakdown (GVBD) occurs normally and a quite similar, but not identical, acid release is recorded (1.10 pmole H+/oocyte). KCl activation of Barnea oocytes is completely inhibited in 100 mM sodium-acetate sea water at pH 6.5 and fertilization does not result in activation when the oocytes are transferred after one minute into 100 mM sodium-acetate sea water at pH 6.3. When D–600, a calcium transmembrane fluxes inhibitor, is added 20 seconds after fertilization, GVBD is inhibited but a normal acid release is recorded. The presence of at least 10 mM sodium ions in the external medium is required for 100% activation of these oocytes by an excess of KCl. These results suggest that while an intracellular pH increase may be a requisite for GVBD, this can not be a sufficient condition to trigger it unless a calcium influx is allowed to occur. Moreover, the acid release does not result from a Ca++-H+ exchange transport but appears more likely to be due to a Na+-H* exchange as it has been demontrated in sea urchin eggs.  相似文献   

19.
A system was designed to investigate ferrous iron transport into Bifidobacterium bifidum var. pennsylvanicus. It involved the incubation of the organisms with labeled ferrous iron in the Norris medium at pH 5, in which the bacteria had grown. Iron uptakes were similar under aerobic and anaerobic conditions. Ferrous but not ferric iron was taken up by the organisms. Iron uptake showed saturation kinetics and a marked temperature dependence. 2,4-Dinitrophenol and thenoltrifluoroacetate but not azide or trypsin treatment inhibited iron uptake. Zinc inhibited iron uptake competitively. Iron uptake from used medium was much greater than that from fresh medium at the same pH. It is concluded that ferrous iron uptake by the microorganisms is a carrier-mediated active phenomenon, inhibited by zinc, which may involve a substance elaborated into the medium by the organism.  相似文献   

20.
The question of how membrane proteins are delivered from the TGN to the cell surface in fibroblasts has received little attention. In this paper we have studied how their post-Golgi delivery routes compare with those in epithelia] cells. We have analyzed the transport of the vesicular stomatitis virus G protein, the Semliki Forest virus spike glycoprotein, both basolateral in MDCK cells, and the influenza virus hemagglutinin, apical in MDCK cells. In addition, we also have studied the transport of a hemagglutinin mutant (Cys543Tyr) which is basolateral in MDCK cells. Aluminum fluoride, a general activator of heterotrimeric G proteins, inhibited the transport of the basolateral cognate proteins, as well as of the hemagglutinin mutant, from the TGN to the cell surface in BHK and CHO cells, while having no effect on the surface delivery of the wild-type hemagglutinin. Only wild-type hemagglutinin became insoluble in the detergent CHAPS during transport through the BHK and CHO Golgi complexes, whereas the basolateral marker proteins remained CHAPS-soluble. We also have developed an in vitro assay using streptolysin O-permeabilized BHK cells, similar to the one we have previously used for analyzing polarized transport in MDCK cells (Pimplikar, S.W., E. Ikonen, and K. Simons. 1994. J. Cell Biol. 125:1025-1035). In this assay anti-NSF and rab-GDI inhibited transport of Semliki Forest virus spike glycoproteins from the TGN to the cell surface while having little effect on transport of the hemagglutinin. Altogether these data suggest that fibroblasts have apical and basolateral cognate routes from the TGN to the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号