首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manipulation by parasites is a catchy concept that has been applied to a large range of phenotypic alterations brought about by parasites in their hosts. It has, for instance, been suggested that the carotenoid-based colour of acanthocephalan cystacanths is adaptive through increasing the conspicuousness of infected intermediate hosts and, hence, their vulnerability to appropriate final hosts such as fish predators. We revisited the evidence in favour of adaptive coloration of acanthocephalan parasites in relation to increased trophic transmission using the crustacean amphipod Gammarus pulex and two species of acanthocephalans, Pomphorhynchus laevis and Polymorphus minutus. Both species show carotenoid-based colorations, but rely, respectively, on freshwater fish and aquatic bird species as final hosts. In addition, the two parasites differ in the type of behavioural alteration brought to their common intermediate host. Pomphorhynchus laevis reverses negative phototaxis in G. pulex, whereas P. minutus reverses positive geotaxis. In aquaria, trout showed selective predation for P. laevis-infected gammarids, whereas P. minutus-infected ones did not differ from uninfected controls in their vulnerability to predation. We tested for an effect of parasite coloration on increased trophic transmission by painting a yellow-orange spot on the cuticle of uninfected gammarids and by masking the yellow-orange spot of infected individuals with inconspicuous brown paint. To enhance realism, match of colour between painted mimics and true parasite was carefully checked using a spectrometer. We found no evidence for a role of parasite coloration in the increased vulnerability of gammarids to predation by trout. Painted mimics did not differ from control uninfected gammarids in their vulnerability to predation by trout. In addition, covering the place through which the parasite was visible did not reduce the vulnerability of infected gammarids to predation by trout. We discuss alternative evolutionary explanations for the origin and maintenance of carotenoid-based colorations in acanthocephalan parasites.  相似文献   

2.
Phenotypic alterations induced by parasites in their intermediate hosts often result in enhanced trophic transmission to appropriate final hosts. However, such alterations may also increase the vulnerability of intermediate hosts to predation by non-host species. We studied the influence of both infection with 3 different acanthocephalan parasites (Pomphorhynchus laevis, P. tereticollis, and Polymorphus minutus) and the availability of refuges on the susceptibility of the amphipod Gammarus pulex to predation by 2 non-host predators in microcosms. Only infection with P. laevis increased the vulnerability of amphipods to predation by crayfish, Orconectes limosus. In contrast, in the absence of refuges, the selectivity of water scorpions, Nepa cinerea, for infected prey was significant and did not differ according to parasite species. When a refuge was available for infected prey, however, water scorpion selectivity for infected prey differed between parasite species. Both P. tereticollis- and P. laevis-infected gammarids were more vulnerable than uninfected ones, whereas the reverse was true of P. minutus-infected gammarids. These results suggest that the true consequences of phenotypic changes associated with parasitic infection in terms of increased trophic transmission of parasites deserve further assessment.  相似文献   

3.
Manipulative parasites can alter the phenotype of intermediate hosts in various ways. However, it is unclear whether such changes are just by-products of infection or adaptive and enhance transmission to the final host. Here, we show that the alteration of serotonergic activity is functionally linked to the alteration of specific behaviour in the amphipod Gammarus pulex infected with acanthocephalan parasites. Pomphorhynchus laevis and, to a lesser extent, Pomphorhynchus tereticollis altered phototactism, but not geotactism, in G. pulex, whereas the reverse was true for Polymorphus minutus. Serotonin (5-hydroxytryptamine, 5-HT) injected to uninfected G. pulex mimicked the altered phototactism, but had no effect on geotactism. Photophilic G. pulex infected with P. laevis or P. tereticollis showed a 40% increase in brain 5-HT immunoreactivity compared to photophobic, uninfected individuals. In contrast, brain 5-HT immunoreactivity did not differ between P. minutus-infected and uninfected G. pulex. Finally, brain 5-HT immunoreactivity differed significantly among P. tereticollis-infected individuals in accordance with their degree of manipulation. Our results demonstrate that altered 5-HT activity is not the mere consequence of infection by acanthocephalans but is specifically linked to the disruption of host photophobic behaviour, whereas the alteration of other behaviours such as geotactism may rely on distinct physiological routes.  相似文献   

4.
The costs of parasitism to host reproduction can be best assessedusing field studies to determine overall mating success andexperimental studies to examine how parasites may affect matingbehavior. We compared the influence of two parasites, Polymorphusparadoxus and P. marilis (Acanthocephala), on the pairing successof their intermediate host (Gammarus lacustris, Crustacea) inboth the field and laboratory. Parasitism significantly loweredthe pairing success of male gammarids. In the field, P. paradoxus-infectedmales paired significantly less often than P. marilis-infectedor uninfected males. Those infected by P. marilis were alsofound in precopula significandy less often than uninfected ones.In the laboratory, the pairing success of males infected byeither parasite was significantly reduced in both competitiveand noncompetitive situations. As in the field studies, thepairing success of P. paradoxus-infected males was significantlylower than that of P. marilis-infected and uninfected males.Polymorphus marilis-infected males were also outcompeted byuninfected individuals, however, their pairing success improvedwhen alone with a female (noncompetitive experiments). We relatethe differential influence of the two parasites on the pairingsuccess of male gammarids to their effects on the physiologyand behavior of G. lacustris.  相似文献   

5.
Nucleopolyhedrovirus (NPV) was tested for vertical transmission in the silkworm, Bombyx mori. Fifth instar larvae were exposed to four different dosages of BmNPV (830, 1300, 1800, and 2000OBs/larva) and a dosage of about 2000OBs/larva was found suitable for obtaining infected adults. Histopathological studies revealed the infection in susceptible tissues and organs initially, and at later stages of infection cycles the spermatocytes and nurse cells in the young oocytes were infected in the larval rudiments of testis and ovary, respectively. The mating of infected females with uninfected males resulted in significant reduction in fecundity (P < 0.01) and hatching of eggs (P < 0.001) due to transovarial transmission of BmNPV. Mating tests of uninfected females and infected males also confirmed venereal transmission as there was a significant reduction in hatching of eggs (P < 0.01). Further, among the F1 hybrid offspring (infected female x uninfected male) that were infected transovarially, larval progeny died at first and second instar stages, whereas those infected venereally developed acute lethal infection late and died by the end of third and fourth instar stage. PCR amplification and sequencing of 473bp of immediate early-1 (ie-1) gene of BmNPV isolated from the viral-infected parent and the F1 offspring confirmed that the viral infection is vertically transmitted to the progeny.  相似文献   

6.
Galipaud M  Gauthey Z  Bollache L 《Parasitology》2011,138(11):1429-1435
Manipulative parasites with complex life cycles are known to induce behavioural and physiological changes in their intermediate hosts. Cyathocephalus truncatus is a manipulative parasite which infects Gammarus pulex as intermediate host. G. pulex males display pre-copulatory mate guarding as a response to male-male competition for access to receptive females. In this paper, we tested the influence that C. truncatus-infection might have on male G. pulex sperm number and pairing success. We considered 3 classes of G. pulex males in our experiments: (i) uninfected males found paired in the field, (ii) uninfected males found unpaired in the field, or (iii) infected males found unpaired in the field. Both infected males and uninfected unpaired males paired less with a new female than uninfected paired males did. Furthermore, infected males appear to be at a strong disadvantage when directly competing for females with a healthy rival male, and had fewer sperm in their testes. We discuss the potential effect of male and female mating strategies on such male host mating alteration.  相似文献   

7.
Besides conspicuous changes in behaviour, manipulative parasites may also induce subtle physiological effects in the host that may also be favourable to the parasite. In particular, parasites may be able to influence the re-allocation of resources in their own favour. We studied the association between the presence of the acanthocephalan parasite, Pomphorhynchus laevis, and inter-individual variation in the lipid and glycogen content of its crustacean host, Gammarus pulex (Amphipoda). Infected gravid females had significantly lower lipid contents than uninfected females, but there was no difference in the lipid contents of non-gravid females and males that were infected with P. laevis. In contrast, we found that all individuals that were parasitised by P. laevis had significantly increased glycogen contents, independent of their sex and reproductive status. We discuss our results in relation to sex-related reproductive strategies of hosts, and the influence they may have on the level of conflict over energy allocation between the host and the parasite.  相似文献   

8.
Co-evolution between parasites and their hosts may lead to changes in the life-history traits of the host that promote sustainability of their populations despite parasite pressure. Such changes are expected to be especially pronounced in the host-parasite systems where parasites cause complete castration of their hosts. We have studied populations of the rough periwinkle, Littorina saxatilis, infested by castrating trematode species, in order to determine whether high infestation levels are associated with a compensatory increase in host fecundity. To test this hypothesis, we determined female fecundity in populations with trematode prevalence spanning from <1% to 30-75%, and followed long-term changes in female fecundity and trematode infestation in two heavily infested populations of L. saxatilis. The broad-scale geographic analysis of populations with different trematode burdens showed that fecundity of uninfected females is significantly higher in highly infested L. saxatilis populations than in those with low trematode burdens. This is also supported by a comparison of fecundity in two pairs of geographically adjacent populations with contrasting trematode levels, revealing higher fecundity of uninfected females in heavily infested populations. Higher fecundity could be explained by the larger size of uninfected females in some heavily infested populations but not in others. Long-term (15-20 years) intra-population analysis performed in two heavily infested L. saxatilis populations showed that female fecundity increased in parallel with a long-term increase in trematode prevalence from 20% to >75% in one population, but remained high and relatively stable in the second population, reflecting its consistently high trematode prevalence (40-65%). These data support the hypothesis that an increase in female fecundity may be a population compensation mechanism in response to heavy trematode infestation in L. saxatilis and suggest the possible involvement of both natural selection and fast (physiological) regulation mechanisms.  相似文献   

9.
Sexual characters may reveal the quality of a potential mate, including the mate's level of infection with parasites. Females that prefer males with low levels of infection or no infection may benefit in several ways. Direct benefits may include avoidance of infection, acquistition of larger nuptial gifts or enhancement in fecundity due to differences in male fertility. Females may also benefit indirectly by producing offspring that are more resistant to infections. We measured female preference for odours produced by male grain beetles, Tenebrio molitor, that were either infected by a tapeworm, Hymenolepis diminuta, or uninfected. This parasite is not transmitted directly between conspecifics. Females were attracted to odours of all males, but they were less attracted to those from parasitized males. To the contrary, females were preferentially attracted to infected females. Males did not show any biased attraction to odours from infected and uninfected male beetles. Females that mated with highly infected males produced fewer offspring than females mated to uninfected males, indicating parasitic infection inflicts multiple costs to males. These results are consistent with models of parasite-mediated sexual selection. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

10.
The acanthocephalan parasite Polymorphus minutus is a manipulator of its intermediate host Gammarus roeseli, which favours its transmission to the final host, a water bird. In contaminated environments, G. roeseli have to cope with two stresses, i.e. P. minutus infection and pollutants. As P. minutus survival relies on its host's survival, we investigated the influence of P. minutus on the antitoxic defence capacities and the energy reserves of G. roeseli females after cadmium exposure. In parallel, malondialdehyde, a toxic effect biomarker, was measured in G. roeseli females and in P. minutus. The results revealed that infected females displayed higher cell damage than uninfected ones, despite an apparent increase in reduced glutathione and metallothionein production. In fact, the increase of these antitoxic systems could be counterbalanced by carotenoid intake by the parasite, so that the overall defence system seemed less efficient in infected females than in uninfected ones. In addition, we demonstrated that cadmium induced cell damage in P. minutus, probably linked with cadmium accumulation in the parasite. Altogether, we observed a paradoxical pattern of responses suggesting that P. minutus increases cadmium toxicity in G. roeseli females although (i) it tends to increase several host antitoxic defence capacities and (ii) it bears part of the pollutant, as reflected by cell damage in the parasite.  相似文献   

11.
For many parasites with complex life cycles, manipulation of intermediate host phenotypes is often regarded as an adaptation to increase the probability of successful transmission. This phenomenon creates opportunities for either synergistic or conflicting interests between different parasite species sharing the same intermediate host. When more than one manipulative parasite infect the same intermediate host, but differ in their definitive host, selection should favour the establishment of a negative association between these manipulators. Both Polymorphus minutus and Pomphorhynchus laevis exploit the amphipod Gammarus pulex as intermediate host but differ markedly in their final host, a fish for P. laevis and a bird for P. minutus. The pattern of host use by these two conflicting manipulative parasites was studied. Their incidence and intensity of infection and their distribution among G. pulex were first examined by analysing three large samples of gammarids collected from the river Tille, Eastern France. Both parasites had low prevalence in the host population. However, temporal fluctuation in the level of parasitic infection was observed. Overall, prevalence of both parasite species was higher in male than in female G. pulex. We then assessed the degree of association between the two parasites among their intermediate hosts, using two different methods: a host-centred measure and a parasite-centred measure. Both measures gave similar results; showing random association between the two acanthocephalan species in their intermediate hosts. We discuss our results in relation to the selective forces and ecological constraints that may determine the pattern of association between conflicting manipulative parasites.  相似文献   

12.
The influence of parasites on host reproduction has been widely studied in natural and experimental conditions. Most studies, however, have evaluated the parasite impact on female hosts only, neglecting the contribution of males for host reproduction. This omission is unfortunate as sex‐dependent infection may have important implications for host–parasite associations. Here, we evaluate for the first time the independent and nonindependent effects of gender infection on host reproductive success using the kissing bug Mepraia spinolai and the protozoan Trypanosoma cruzi as model system. We set up four crossing treatments including the following: (1) both genders infected, (2) both genders uninfected, (3) males infected—females uninfected, and (4) males uninfected—females infected, using fecundity measures as response variables. Interactive effects of infection between sexes were prevalent. Uninfected females produced more and heavier eggs when crossed with uninfected than infected males. Uninfected males, in turn, sired more eggs and nymphs when crossed with uninfected than infected females. Unexpectedly, infected males sired more nymphs when crossed with infected than uninfected females. These results can be explained by the effect of parasitism on host body size. As infection reduced size in both genders, infection on one sex only creates body size mismatches and mating constraints that are not present in pairs with the same infection status. Our results indicate the fitness impact of parasitism was contingent on the infection status of genders and mediated by body size. As the fecundity impact of parasitism cannot be estimated independently for each gender, inferences based only on female host infection run the risk of providing biased estimates of parasite‐mediated impact on host reproduction.  相似文献   

13.
Carotenoid compositions of two freshwater Gammarus species (Crustacea: Amphipoda) and of their common acanthocephalan parasite Polymorphus minutus were characterized. The effect of carotenoid uptake by the parasite was addressed by comparing the carotenoid content of uninfected and infected female hosts. Using high-pressure liquid chromatography (HPLC), co-chromatography of reference pigments and electron ionization mass spectrometry of collected HPLC fractions (EI-MS), several xanthophylls and non-polar compounds were identified. Seven kinds of carotenoids, mainly xanthophylls, were identified in gammarids. Astaxanthin was predominant, amounting to 40 wt.% of total carotenoid in both uninfected G. pulex and G. roeseli. By contrast, we found only non-polar compounds with a predominance of esterified forms of astaxanthin in P. minutus larvae. No significant effect of infection on carotenoid content was evidenced in G. pulex and G. roeseli females. Our study highlights the use of a Matrix Solid Phase Dispersion as an efficient extraction method of both xanthophylls and non-polar pigments in small samples, including lipid-rich ones as P. minutus parasite. We discuss on the presumptive pathway leading to the formation of free astaxanthin in gammarids via hydroxy compounds, and on the accumulation of esters of astaxanthin in parasites.  相似文献   

14.
Trophically transmitted parasites are likely to strongly influence food web-structure. The extent to which they change the trophic ecology of their host remains nevertheless poorly investigated and field evidence is lacking. This is particularly true for acanthocephalan parasites whose invertebrate hosts can prey on other invertebrates and contribute to leaf-litter breakdown. We used a multiple approach combining feeding experiments, neutral lipids and stable isotopes to investigate the trophic ecology of the freshwater amphipod Gammarus roeseli parasitized by the bird acanthocephalan Polymorphus minutus. Infected compared to uninfected amphipods consumed as many dead isopods, but fewer live isopods and less leaf material. Infection had no influence on the total concentration of neutral lipids. Contrary to what we expected based on laboratory findings, the nitrogen isotope signature, which allows for the estimation of consumer's trophic position, was not influenced by infection status. Conversely, the carbon isotope signature, which is used to identify food sources, changed with infection and suggested that the diet of infected G. roeseli includes less perilithon (i.e. fixed algae on rocks, stones) but more terrestrial inputs (e.g. leaf material) than that of uninfected conspecifics. This study shows evidence of changes in the trophic ecology of P. minutus-infected G. roeseli and we stress the need to complement feeding experiments with field data when investigating top-down effects of infection in an opportunistic feeder which adapts its diet to the available food sources.  相似文献   

15.
We have investigated the influence of Microphallus papillorobustus (Trematoda) on the reproductive biology and mating patterns of its intermediate host Gammarus insensibilis (Amphipoda). Infected Gammarus species show altered behaviour which renders them more susceptible to predation by Charadriiform birds, the parasite's definitive hosts. In a natural population of G. insensibilis, mean parasite intensity was higher for unpaired individuals than for paired individuals. Fecundity was reduced in infected amphipods. Size-assortative pairing was significant, although infected males were found with smaller females compared to uninfected males of the same size. There was also a positive assortative pairing by parasitic prevalence. Vertical segregation between infected and uninfected individuals, male-male competition for access to uninfected females, and female choice may explain assortative mating for prevalence. This study provides the first empirical evidence that parasites can have a direct effect on patterns of mating in gammarids.  相似文献   

16.
Many parasites with complex life cycles increase the chances of reaching a final host by adapting strategies to manipulate their intermediate host's appearance, condition or behaviour. The acanthocephalan parasite Pomphorhynchus laevis uses freshwater amphipods as intermediate hosts before reaching sexual maturity in predatory fish. We performed a series of choice experiments with infected and uninfected Gammarus pulex in order to distinguish between the effects of visual and olfactory predator cues on parasite-induced changes in host behaviour. When both visual and olfactory cues, as well as only olfactory cues were offered, infected and uninfected G. pulex showed significantly different preferences for the predator or the non-predator side. Uninfected individuals significantly avoided predator odours while infected individuals significantly preferred the side with predator odours. When only visual contact with a predator was allowed, infected and uninfected gammarids behaved similarly and had no significant preference. Thus, we believe we show for the first time that P. laevis increases its chance to reach a final host by olfactory-triggered manipulation of the anti-predator behaviour of its intermediate host.  相似文献   

17.
Because of their effects on host reproductive behaviour, parasites are theoretically expected to create sometimes assortative mating among hosts, with heavily parasitized individuals pairing together and lightly parasitized ones pairing among themselves. We investigated the influence of protozoan gut parasites on the pairing pattern of the chrysomelid beetle Timarcha maritima. In the field, fecundity was negatively correlated with the parasite load of females, unpaired males were significantly more heavily infected than paired ones and, among pairs, males and females were matched for parasite load. Mate choice experiments in the laboratory showed that males have some ability to avoid heavily infected partners when given the choice between two females. Male competitiveness, measured as their mobility, was also negatively correlated with parasite load. These results indicate that parasite-related assortative pairing in this beetle could result from parasitized females being less fecund and parasitized males less competitive.  相似文献   

18.
The aim of the present study was to evaluate alterations in the reproduction induced by acanthellae and cystacanths of the acanthocephalans Acanthocephalus tumescens and Corynosoma sp. in the amphipod Hyalella patagonica from Lake Mascardi. Specimens of H. patagonica were separated in two categories: paired amphipods (joined specimens during precopulatory mate guarding period until fertilization) and unpaired amphipods (alone specimens). Different analyses were performed: first with paired (n = 406) and unpaired (n = 375) amphipods, and second only with female amphipods (n = 1949), that were classified into three categories (without internal oocytes and eggs, only with internal oocytes, and with eggs). Also, carotenoid extraction was performed of amphipods uninfected (n = 75) and infected (n = 105) by cystacanths of Corynosoma sp. Unpaired amphipods had significantly higher prevalence of cystacanths of both acanthocephalan species than paired ones; but such differences were not found in prevalence of acanthellae. Female amphipods without internal oocytes and eggs showed significantly higher prevalence of cystacanths of both acanthocephalan species than the two other female categories; while females with eggs had significantly higher prevalence of A. tumescens acanthellae. Amphipods infected by Corynosoma sp. showed lower carotenoid concentration than uninfected ones. In Lake Mascardi, there is indirect evidence of both reduced mating success and female fecundity of H. patagonica provoked by both cystacanths species (A. tumescens and Corynosoma sp.). However, infections by acanthellae seem to have no effects.  相似文献   

19.
Many maternally inherited endosymbionts manipulate their host's reproduction in various ways to enhance their own fitness. One such mechanism is male killing (MK), in which sons of infected mothers are killed by the endosymbiont during development. Several hypotheses have been proposed to explain the advantages of MK, including resource reallocation from sons to daughters of infected females, avoidance of inbreeding by infected females, and, if transmission is not purely maternal, the facilitation of horizontal transmission to uninfected females. We tested these hypotheses in Drosophila innubila, a mycophagous species infected with MK Wolbachia. There was no evidence of horizontal transmission in the wild and no evidence Wolbachia reduced levels of inbreeding. Resource reallocation does appear to be operative, as Wolbachia-infected females are slightly larger, on average, than uninfected females, although the selective advantage of larger size is insufficient to account for the frequency of infection in natural populations. Wolbachia-infected females from the wild-although not those from the laboratory-were more fecund than uninfected females. Experimental studies revealed that Wolbachia can boost the fecundity of nutrient-deprived flies and reduce the adverse effect of RNA virus infection. Thus, this MK endosymbiont can provide direct, MK-independent fitness benefits to infected female hosts in addition to possible benefits mediated via MK.  相似文献   

20.
Wolbachia are maternally inherited bacteria that commonly spread through host populations by causing cytoplasmic incompatibility, often expressed as reduced egg hatch when uninfected females mate with infected males. Infected females are frequently less fecund as a consequence of Wolbachia infection. However, theory predicts that because of maternal transmission, these "parasites" will tend to evolve towards a more mutualistic association with their hosts. Drosophila simulans in California provided the classic case of a Wolbachia infection spreading in nature. Cytoplasmic incompatibility allowed the infection to spread through individual populations within a few years and from southern to northern California (more than 700 km) within a decade, despite reducing the fecundity of infected females by 15%-20% under laboratory conditions. Here we show that the Wolbachia in California D. simulans have changed over the last 20 y so that infected females now exhibit an average 10% fecundity advantage over uninfected females in the laboratory. Our data suggest smaller but qualitatively similar changes in relative fecundity in nature and demonstrate that fecundity-increasing Wolbachia variants are currently polymorphic in natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号