首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tjong SC  Wu PL  Wang CM  Huang WN  Ho NL  Wu WG 《Biochemistry》2007,46(43):12111-12123
The major cardiotoxin from Taiwan cobra (CTX A3) is a pore forming beta-sheet polypeptide that requires sulfatide (sulfogalactosylceramide, SGC) on the plasma membrane of cardiomyocytes for CTX-induced membrane leakage and cell internalization. Herein, we demonstrate by fluorescence spectroscopic studies that sulfatides induce CTX A3 oligomerization in sulfatide containing phosphatidylcholine (PC) vesicles to form transient pores with pore size and lifetime in the range of about 30 A and 10(-2) s, respectively. These values are consistent with the CTX A3-induced conductance and mean lifetime determined previously by using patch-clamp electrophysiological experiments on the plasma membrane of H9C2 cells. We also derived the peripheral binding structural model of CTX A3-sulfatide complex in sulfatide containing PC micelles by NMR and molecular docking method and compared with other CTX A3-sulfatide complex structure determined previously by X-ray in membrane-like environment. The NMR results indicate that sulfatide head group conformation changes from a bent shovel (-sc/ap) to an extended (sc/ap) conformation upon initial binding of CTX A3. An additional global reorientation of sulfatide molecule is also needed for CTX A3 dimer formation as inferred by the difference between the X-ray and NMR complex structure. Since the overall folding of CTX A3 molecules remained the same, sulfatide in phospholipid bilayer is proposed to play an active role by involving its local and global conformational changes to promote both the oligomerization and reorientation of CTX A3 molecule for its transient pore formation and cell internalization.  相似文献   

2.
Cobra CTX A3, the major cardiotoxin (CTX) from Naja atra, is a cytotoxic, basic β-sheet polypeptide that is known to induce a transient membrane leakage of cardiomyocytes through a sulfatide-dependent CTX membrane pore formation and internalization mechanism. The molecular specificity of CTX A3-sulfatide interaction at atomic levels has also been shown by both nuclear magnetic resonance (NMR) and X-ray diffraction techniques to reveal a role of CTX-induced sulfatide conformational changes for CTX A3 binding and dimer formation. In this study, we investigate the role of sulfatide lipid domains in CTX pore formation by various biophysical methods, including fluorescence imaging and atomic force microscopy, and suggest an important role of liquid-disordered (ld) and solid-ordered (so) phase boundary in lipid domains to facilitate the process. Fluorescence spectroscopic studies on the kinetics of membrane leakage and CTX oligomerization further reveal that, although most CTXs can oligomerize on membranes, only a small fraction of CTXs oligomerizations form leakage pores. We therefore suggest that CTX binding at the boundary between the so and so/ld phase coexistence sulfatide lipid domains could form effective pores to significantly enhance the CTX-induced membrane leakage of sulfatide-containing phosphatidylcholine vesicles. The model is consistent with our earlier observations that CTX may penetrate and lyse the bilayers into small aggregates at a lipid/protein molar ratio of about 20 in the ripple P(β)' phase of phosphatidylcholine bilayers and suggest a novel mechanism for the synergistic action of cobra secretary phospholipase A2 and CTXs.  相似文献   

3.
We investigate the role of anionic lipids in the binding to, and subsequent movement of charged protein groups in lipid membranes, to help understand the role of membrane composition in all membrane-active protein sequences. We demonstrate a small effect of phosphatidylglycerol (PG) lipids on the ability of an arginine (Arg) side chain to bind to, and cross a lipid membrane, despite possessing a neutralizing charge. We observe similar membrane deformations in lipid bilayers composed of phosphatidylcholine (PC) and PC/PG mixtures, with comparable numbers of water and lipid head groups pulled into the bilayer hydrocarbon core, and prohibitively large ~20 kcal/mol barriers for Arg transfer across each bilayer, dropping by just 2-3 kcal/mol due to the binding of PG lipids. We explore the causes of this small effect of introducing PG lipids and offer an explanation in terms of the limited membrane interaction for the choline groups of PC lipids bound to the translocating ion. Our calculations reveal a surprising lack of preference for Arg binding to PG lipids themselves, but a small increase in interfacial binding affinity for lipid bilayers containing PG lipids. These results help to explain the nature of competitive lipid binding to charged protein sequences, with implications for a wide range of membrane binding domains and cell perturbing peptides.  相似文献   

4.
Papo N  Shai Y 《Biochemistry》2003,42(2):458-466
Lytic peptides comprise a large group of membrane-active peptides used in the defensive and offensive systems of all organisms. Differentiating between their modes of interaction with membranes is crucial for understanding how these peptides select their target cells. Here we utilized SPR to study the interaction between lytic peptides and lipid bilayers (L1 sensor chip). Using studies also on hybrid monolayers (HPA sensor chip) revealed that SPR is a powerful tool for obtaining a real-time monitoring of the steps involved in the mode of action of membrane-active peptides, some of which previously could not be detected directly by other techniques and reported here for the first time. We investigated the mode of action of peptides that represent two major families: (i) the bee venom, melittin, as a model of a non-cell-selective peptide that forms transmembrane pores and (ii) magainin and a diastereomer of melittin (four amino acids were replaced by their D enantiomers), as models of bacteria-selective non-pore-forming peptides. Fitting the SPR data to different interaction models allows differentiating between two major steps: membrane binding and membrane insertion. Melittin binds to PC/cholesterol approximately 450-fold better than its diastereomer and magainin, mainly because it is inserted into the inner leaflet (2/3 of the binding energy), whereas the other two are not. In contrast, there is only a slight difference in the binding of all the peptides to negatively charged PE/PG mono- and bilayer membranes (in the first and second steps), indicating that the inner leaflet contributes only slightly to their binding to PE/PG bilayers. Furthermore, the 100-fold stronger binding of the cell-selective peptides to PE/PG as compared with PC/cholesterol resulted only from electrostatic attraction to the negatively charged headgroups of the outer leaflet. These results clearly differentiate between the two general mechanisms: pore formation by melittin only in zwitterionic membranes and a detergent-like effect (carpet mechanism) for all the peptides in negatively charged membranes, in agreement with their biological function.  相似文献   

5.
Structural basis of membrane-induced cardiotoxin A3 oligomerization   总被引:6,自引:0,他引:6  
Cobra cardiotoxins (CTXs) have previously been shown to induce membrane fusion of vesicles formed by phospholipids such as cardiolipin or sphingomyelin. CTX can also form a pore in membrane bilayers containing a anionic lipid such as phosphatidylserine or phosphatidylglycerol. Herein, we show that the interaction of CTX with negatively charged lipids causes CTX dimerization, an important intermediate for the eventual oligomerization of CTX during the CTX-induced fusion and pore formation process. The structural basis of the lipid-induced oligomerization of CTX A3, a major CTX from Naja atra, is then illustrated by the crystal structure of CTX A3 in complex with SDS; SDS likely mimics anionic lipids of the membrane under micelle conditions at 1.9-A resolution. The crystal packing reveals distinct SDS-free and SDS-rich regions; in the latter two types of interconnecting CTX A3 dimers, D1 and D2, and several SDS molecules can be identified to stabilize D1 and D2 by simultaneously interacting with residues at each dimer interface. When the three CTXSDS complexes in the asymmetric unit are overlaid, the orientation of CTX A3 monomers relative to the SDS molecules in the crystal is strikingly similar to that of the toxin with respect to model membranes as determined by NMR and Fourier transform infrared methods. These results not only illustrate how lipid-induced CTX dimer formation may be transformed into oligomers either as inverted micelles of fusion intermediates or as membrane pore of anionic lipid bilayers but also underscore a potential role for SDS in x-ray diffraction study of protein-membrane interactions in the future.  相似文献   

6.
Papo N  Shai Y 《Biochemistry》2004,43(21):6393-6403
The amphipathic alpha-helix is a common motif found in many cell lytic peptides including antimicrobial peptides. We have recently shown that significantly altering the amphipathic structure of a lytic peptide by reshuffling its sequence and/or replacing a few l-amino acids with their D-enantiomers did not significantly affect the antimicrobial activity of the peptides nor their ability to bind and permeate negatively charged (PE/PG) membranes. However, a pronounced effect was observed regarding their hemolytic activity and their ability to bind and permeate zwitterionic (PC/Cho) membranes. To shed light on these findings, here we used surface plasmon resonance (SPR) with mono- and bilayer membranes. We found that the L-amino acid (aa) peptides bound 10-25-fold stronger to PC/Cho bilayers compared with monolayers, whereas the diastereomers bound similarly to both membranes. A two-state reaction model analysis of the data indicated that this difference is due to the insertion of the L-aa peptides into the PC/Cho bilayers, whereas the diastereomers are surface-localized. In contrast, only an approximately 2-fold difference was found with negatively charged membranes. Changes in the amphipathicity markedly affected only the insertion of the L-aa peptides into PC/Cho bilayers. Furthermore, whereas the all-L-aa peptides bound similarly to the PC/Cho and PE/PG membranes, the diastereomers bound approximately 100-fold better to PE/PG compared with PC/Cho membranes, and selectivity was determined only in the first binding step. The effect of the peptides on the lipid order determined by using ATR-FTIR studies supported these findings. Besides shedding light on the mode of action of these peptides, the present study demonstrates SPR as a powerful tool to differentiate between non-cell-selective compared with bacteria-selective peptides, based on differences in their membrane binding behavior.  相似文献   

7.
Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 angstroms resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.  相似文献   

8.
Interaction of poly(hexamethylene biguanide hydrochloride) (PHMB), which is a polymeric biocide bearing biguanide groups in its main chain, with phospholipid bilayers was studied by the fluorescence depolarization method. A strong interaction of PHMB with negatively charged bilayers composed of phosphatidylglycerol(PG) alone or of PG and phosphatidylcholine (PC) was observed, whereas neutral PC bilayers were not affected. On adding PHMB, the fluorescence polarization of diphenylhexatriene embedded in the negatively charged bilayers was reduced to a great extent, especially in the gel phase. This was interpreted in terms of PHMB-induced expansion and fluidization of the bilayer, which enables the probe molecule to undergo less-hindered torsional motion. Similarity between PHMB and polymyxin B in the structure, the mode of action against bacteria and the interaction with lipid membranes is discussed.  相似文献   

9.
Interaction of poly(hexamethylene biguanide hydrochloride) (PHMB), which is a polymeric biocide bearing biguanide groups in its main chain, with phospholipid bilayers was studied by the fluorescence depolarization method. A strong interaction of PHMB with negatively charged bilayers composed of phosphatidylglycerol(PG) alone or of PG and phosphatidylcholine (PC) was observed, whereas neutral PC bilayers were not affected. On adding PHMB, the fluorescence polarization of diphenylhexatriene embedded in the negatively charged bilayers was reduced to a great extent, especially in the gel phase. This was interpreted in terms of PHMB-induced expansion and fluidization of the bilayer, which enables the probe molecule to undergo less-hindered torsional motion. Similarity between PHMB and polymyxin B in the structure, the mode of action against bacteria and the interaction with lipid membranes is discussed.  相似文献   

10.
Antimicrobial peptides (AMPs) have been an area of great interest, due to the high selectivity of these molecules toward bacterial targets over host cells and the limited development of bacterial resistance to these molecules throughout evolution. Previous work showed that when Histidine was incorporated into the peptide C18G it lost antimicrobial activity. The role of pH on activity and biophysical properties of the peptide was investigated to explain this phenomenon. Minimal inhibitory concentration (MIC) results demonstrated that decreased media pH increased antimicrobial activity. Trichloroethanol (TCE) quenching and red-edge excitation spectroscopy (REES) showed a clear pH dependence on peptide aggregation in solution. Trp fluorescence was used to monitor binding to lipid vesicles and demonstrated the peptide binds to anionic bilayers at all pH values tested, however, binding to zwitterionic bilayers was enhanced at pH 7 and 8 (above the His pKa). Dual Quencher Analysis (DQA) confirmed the peptide inserted more deeply in PC:PG and PE:PG membranes, but could insert into PC bilayers at pH conditions above the His pKa. Bacterial membrane permeabilization assays which showed enhanced membrane permeabilization at pH 5 and 6 but vesicle leakage assays indicate enhanced permeabilization of PC and PC:PG bilayers at neutral pH. The results indicate the ionization of the His side chain affects the aggregation state of the peptide in solution and the conformation the peptide adopts when bound to bilayers, but there are likely more subtle influences of lipid composition and properties that impact the ability of the peptide to form pores in membranes.  相似文献   

11.
Comparative studies of the effect of a short synthetic cationic peptide, pEM-2 (KKWRWWLKALAKK), derived from the C-terminus of myotoxin II from the venom of the snake Bothrops asper on phospholipid mono- and bilayers were performed by means of Langmuir Blodgett (LB) monolayer technique, atomic force microscopy and calcein leakage assay. Phospholipid mono- and bilayers composed of single zwitterionic or anionic phospholipids as well as lipid mixtures mimicking bacterial cell membrane were used. LB measurements indicate that the peptide binds to both anionic and zwitterionic phospholipid monolayers at low surface pressure but only to anionic at high surface pressure. Preferential interaction of the peptide with anionic phospholipid monolayer is also supported by a more pronounced change of the monolayer pressure/area isotherms induced by the peptide. AFM imaging reveals the presence of nanoscale aggregates in lipid/peptide mixture monolayers. At the same time, calcein leakage experiment demonstrated that pEM-2 induces stronger disruption of zwitterionic than anionic bilayers. Results of the study indicate that electrostatic interactions play a significant role in the initial recognition and binding of pEM-2 to the cell membrane. However, membrane rupturing activity of the peptide depends on interactions other than simple ionic attraction.  相似文献   

12.
Kimura T 《Biochemistry》2006,45(51):15601-15609
A human opioid neuropeptide, Met-enkephalin (M-Enk: Tyr1-Gly2-Gly3-Phe4-Met5), having no net charge binds to anionic phosphatidylserine (PS) in high preference to zwitterionic phosphatidylcholine (PC). The binding mechanism in the PS and PC bilayers was studied on the basis of the inter- and intramolecular interaction data obtained by natural-abundance 13C nuclear magnetic resonance (NMR) of the peptide. Prominent upfield changes of the 13C resonance were observed in the C-terminal residue upon binding to PS, whereas no such marked change was observed upon binding to PC. The upfield chemical shift changes with their characteristic carbon site dependence are ascribed to the electrostatic binding between the peptide C-terminal CO2- and the PS headgroup NH3+. Despite the net negative charge of the PS bilayer surface, M-Enk thus anchors the negatively charged C-terminus. In the N-terminal residue, on the other hand, marked downfield chemical shift changes are observed upon binding to both the PS and PC bilayers, the magnitude of the changes being much larger in the PS system. The downfield changes with their characteristic carbon site dependence are ascribed to the electrostatic binding between the peptide N-terminal NH3+ and the lipid headgroup negative charge(s) (CO2- or PO4- in PS, PO4- in PC). Perturbation on the signal half-widths due to membrane binding also indicates the preferential and deeper binding of M-Enk on the PS membrane surface than on the PC membrane surface. Local charge cancellation takes place efficiently between M-Enk termini and the PS headgroups and compensates for the strong electrostatic hydration of the ionic groups. Distribution of the charged (positive and negative) and uncharged sites in the headgroups along the bilayer normal is responsible for the marked difference between PS and PC headgroups in controlling the binding state of the zwitterionic M-Enk.  相似文献   

13.
Dermaseptin S9 (Drs S9) is an atypical cationic antimicrobial peptide with a long hydrophobic core and with a propensity to form amyloid-like fibrils. Here we investigated its membrane interaction using a variety of biophysical techniques. Rather surprisingly, we found that Drs S9 induces efficient permeabilisation in zwitterionic phosphatidylcholine (PC) vesicles, but not in anionic phosphatidylglycerol (PG) vesicles. We also found that the peptide inserts more efficiently in PC than in PG monolayers. Therefore, electrostatic interactions between the cationic Drs S9 and anionic membranes cannot explain the selectivity of the peptide towards bacterial membranes. CD spectroscopy, electron microscopy and ThT fluorescence experiments showed that the peptide adopts slightly more β-sheet and has a higher tendency to form amyloid-like fibrils in the presence of PC membranes as compared to PG membranes. Thus, induction of leakage may be related to peptide aggregation. The use of a pre-incorporation protocol to reduce peptide/peptide interactions characteristic of aggregates in solution resulted in more α-helix formation and a more pronounced effect on the cooperativity of the gel-fluid lipid phase transition in all lipid systems tested. Calorimetric data together with 2H- and 31P-NMR experiments indicated that the peptide has a significant impact on the dynamic organization of lipid bilayers, albeit slightly less for zwitterionic than for anionic membranes. Taken together, our data suggest that in particular in membranes of zwitterionic lipids the peptide binds in an aggregated state resulting in membrane leakage. We propose that also the antimicrobial activity of Drs S9 may be a result of binding of the peptide in an aggregated state, but that specific binding and aggregation to bacterial membranes is regulated not by anionic lipids but by as yet unknown factors.  相似文献   

14.
Allende D  McIntosh TJ 《Biochemistry》2003,42(4):1101-1108
Melittin is a small, cationic peptide that, like many other antimicrobial peptides, lyses cell membranes by acting on their lipid bilayers. However, the sensitivity to antimicrobial peptides varies among cell types. We have performed direct binding and vesicle leakage experiments to determine the sensitivity to melittin of bilayers composed of various physiologically relevant lipids, in particular, key components of eukaryotic membranes (cholesterol) and bacterial outer membranes (lipopolysaccharide or LPS). Melittin binds to bilayers composed of both zwitterionic and negatively charged phospholipids, as well as to the highly charged LPS bilayers. The magnitude of the free energy of binding (deltaG degrees ) increases with increasing bilayer charge density; deltaG degrees = -7.6 kcal/mol for phosphatidylcholine (PC) bilayers and -8.9 to -11.0 kcal/mol for negatively charged bilayers containing phosphatidylserine (PS), phospholipids with covalently attached polyethylene glycol (PEG-lipids), or LPS. Comparisons of these data show that binding is not markedly affected by the steric barrier produced by the PEG in PEG-lipids or by the polysaccharide core of LPS. The addition of equimolar cholesterol to PC bilayers reduces the level of binding (deltaG degrees = -6.4 kcal/mol) and reduces the extent of melittin-induced leakage by 20-fold. LPS and 1:1 PC/cholesterol bilayers have similar high resistance to melittin-induced leakage, indicating that cholesterol in eukaryotic plasma membranes and LPS in Gram-negative bacteria provide strong protection against the lytic effects of melittin. We argue that this resistance is due at least in part to the similar tight packing of the lipid acyl chains in PC/cholesterol and LPS bilayers. The addition of bacterial phospholipids to LPS bilayers increases their sensitivity to melittin, helping to explain the higher sensitivity of deep rough bacteria compared to smooth phenotypes.  相似文献   

15.
The cecropin-melittin hybrid antimicrobial peptide BP100 (H-KKLFKKILKYL-NH2) is selective for Gram-negative bacteria, negatively charged membranes, and weakly hemolytic. We studied BP100 conformational and functional properties upon interaction with large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs, containing variable proportions of phosphatidylcholine (PC) and negatively charged phosphatidylglycerol (PG). CD and NMR spectra showed that upon binding to PG-containing LUVs BP100 acquires α-helical conformation, the helix spanning residues 3–11. Theoretical analyses indicated that the helix is amphipathic and surface-seeking. CD and dynamic light scattering data evinced peptide and/or vesicle aggregation, modulated by peptide:lipid ratio and PG content. BP100 decreased the absolute value of the zeta potential (ζ) of LUVs with low PG contents; for higher PG, binding was analyzed as an ion-exchange process. At high salt, BP100-induced LUVS leakage requires higher peptide concentration, indicating that both electrostatic and hydrophobic interactions contribute to peptide binding. While a gradual release took place at low peptide:lipid ratios, instantaneous loss occurred at high ratios, suggesting vesicle disruption. Optical microscopy of GUVs confirmed BP100-promoted disruption of negatively charged membranes. The mechanism of action of BP100 is determined by both peptide:lipid ratio and negatively charged lipid content. While gradual release results from membrane perturbation by a small number of peptide molecules giving rise to changes in acyl chain packing, lipid clustering (leading to membrane defects), and/or membrane thinning, membrane disruption results from a sequence of events – large-scale peptide and lipid clustering, giving rise to peptide-lipid patches that eventually would leave the membrane in a carpet-like mechanism.  相似文献   

16.
Liu F  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2004,43(12):3679-3687
High-sensitivity differential scanning calorimetry and Fourier transform infrared spectroscopy were used to study the interaction of a cationic alpha-helical transmembrane peptide, acetyl-Lys(2)-Leu(24)-Lys(2)-amide (L(24)), and members of the homologous series of anionic n-saturated diacyl phosphatidylglycerols (PGs). Analogues of L(24), in which the lysine residues were replaced by 2,3-diaminopropionic acid (L(24)DAP), or in which a leucine residue at each end of the polyleucine sequence was replaced by a tryptophan (WL(22)W), were also studied to investigate the roles of lysine side-chain snorkeling and aromatic side-chain interactions with the interfacial region of phospholipid bilayers. The gel/liquid-crystalline phase transition temperature of the host PG bilayers is altered by these peptides in a hydrophobic mismatch-dependent manner, as previously found with zwitterionic phosphatidylcholine (PC) bilayers. However, all three peptides reduce the phase transition temperature and enthalpy to a greater extent in anionic PG bilayers than in zwitterionic PC bilayers, with WL(22)W having the largest effect. All three peptides form very stable alpha-helices in PG bilayers, but small conformational changes are induced in response to a mismatch between peptide hydrophobic length and gel-state lipid bilayer hydrophobic thickness. Moreover, electrostatic and hydrogen-bonding interactions occur between the terminal lysine residues of L(24) and L(24)DAP and the polar headgroups of PG bilayers. However, such interactions were not observed in PG/WL(22)W bilayers, suggesting that the cation-pi interactions between the tryptophan and lysine residues predominate. These results indicate that the lipid-peptide interactions are affected not only by the hydrophobic mismatch between these peptides and the host lipid bilayer, but also by the tryptophan-modulated electrostatic and hydrogen-bonding interactions between the positively charged lysine residues at the termini of these peptides and the negatively charged polar headgroups of the PG bilayers.  相似文献   

17.
Substances able to modulate multidrug resistance (MDR), including antipsychotic phenothiazine derivatives, are mainly cationic amphiphiles. The molecular mechanism of their action can involve interactions with transporter proteins as well as with membrane lipids. The interactions between anionic phospholipids and MDR modulators can be crucial for their action. In present work we study interactions of 2-trifluoromethyl-10-(4-[methanesulfonylamid]buthyl)-phenothiazine (FPhMS) with neutral (PC) and anionic lipids (PG and PS). Using microcalorimetry, steady-state and time-resolved fluorescence spectroscopy we show that FPhMS interacts with all lipids studied and drug location in membrane depends on lipid type. The electrostatic attraction between drug and lipid headgroups presumably keeps phenothiazine derivative molecules closer to surface of negatively charged membranes with respect to neutral ones. FPhMS effects on bilayer properties are not proportional to phosphatidylserine content in lipid mixtures. Behavior of equimolar PC:PS mixtures is similar to pure PS bilayers, while 2:1 or 1:2 (mole:mole) PC:PS mixtures resemble pure PC ones.  相似文献   

18.
Arenicin-2 is a 21-residue β-hairpin antimicrobial peptide isolated from the marine lugworm Arenicola marina. The structure of this cationic peptide in partly charged lipid membrane made of PC/PG (7: 3) was studied by FTIR, CD, and Trp fluorescence spectroscopies. FTIR spectra of arenicin in amide I region were analyzed using curve-fitting and second derivative procedures. The FTIR data for the peptide in PC/PG liposomes were compared with the data obtained in anionic SDS micelles where arenicin forms a dimer stabilized by parallel association of two β-hairpins according to previous NMR spectroscopy studies [Ovchinnikova et al., Biopolymers, 2007, vol. 89, pp. 455–464; Shenkarev et al., Biochemistry, 2011, vol. 50, pp. 6255–6265]. The results obtained in present work indicate that arenicin forms the dimeric structure in partly charged PC/PG lipid membrane. This finding is discussed in relation to interpretation of low-conducting pores observed for arenicin in negatively charged membranes.  相似文献   

19.
Deposition of transthyretin (TTR) amyloid is a pathological hallmark of familial amyloidotic polyneuropathy (FAP). Recently we showed that TTR binds to membrane lipids via electrostatic interactions and that membrane binding is correlated with the cytotoxicity induced by amyloidogenic TTR. In the present study, we examined the role of lipid composition in membrane binding of TTR by a surface plasmon resonance (SPR) approach. TTR bound to lipid bilayers through both high- and low-affinity interactions. Increasing the mole fraction of cholesterol in the bilayer led to an increase in the amount of high-affinity binding of an amyloidogenic mutant (L55P) TTR. In addition, a greater amount of L55P TTR bound with high affinity to membranes made from anionic phospholipids, phosphatidylglycerol (PG) and phosphatidylserine (PS), than to membranes made from zwitterionic phospholipid phosphatidylcholine (PC). The anionic phospholipids (PS and PG) promoted the aggregation of L55P TTR by accelerating the nucleation phase of aggregation, whereas the zwitterionic phospholipid PC had little effect. These results suggest that cholesterol and anionic phospholipids may be important for TTR aggregation and TTR-induced cytotoxicity.  相似文献   

20.
The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide–membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号