首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ebola virus causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Vascular instability and dysregulation are disease-decisive symptoms during severe infection. While the transmembrane glycoprotein GP(1,2) has been shown to cause endothelial cell destruction, the role of the soluble glycoproteins in pathogenesis is largely unknown; however, they are hypothesized to be of biological relevance in terms of target cell activation and/or increase of endothelial permeability. Here we show that virus-like particles (VLPs) consisting of the Ebola virus matrix protein VP40 and GP(1,2) were able to activate endothelial cells and induce a decrease in barrier function as determined by impedance spectroscopy and hydraulic conductivity measurements. In contrast, the soluble glycoproteins sGP and delta-peptide did not activate endothelial cells or change the endothelial barrier function. The VLP-induced decrease in barrier function was further enhanced by the cytokine tumor necrosis factor alpha (TNF-alpha), which is known to induce a long-lasting decrease in endothelial cell barrier function and is hypothesized to play a key role in Ebola virus pathogenesis. Surprisingly, sGP, but not delta-peptide, induced a recovery of endothelial barrier function following treatment with TNF-alpha. Our results demonstrate that Ebola virus GP(1,2) in its particle-associated form mediates endothelial cell activation and a decrease in endothelial cell barrier function. Furthermore, sGP, the major soluble glycoprotein of Ebola virus, seems to possess an anti-inflammatory role by protecting the endothelial cell barrier function.  相似文献   

2.
Cellular cathepsins are required for Ebola virus infection and are believed to proteolytically process the Ebola virus glycoprotein (GP) during entry. However, the significance of cathepsin cleavage during infection remains unclear. Here we demonstrate a role for cathepsin L (CatL) cleavage of Ebola virus GP in the generation of a stable 18-kDa GP1 viral intermediate that exhibits increased binding to and infectivity for susceptible cell targets. Cell binding to a lymphocyte line was increased when CatL-proteolysed pseudovirions were used, but lymphocytes remained resistant to Ebola virus GP-mediated infection. Genetic removal of the highly glycosylated mucin domain in Ebola virus GP resulted in cell binding similar to that observed with CatL-treated full-length GP, and no overall enhancement of binding or infectivity was observed when mucin-deleted virions were treated with CatL. These results suggest that cathepsin cleavage of Ebola virus GP facilitates an interaction with a cellular receptor(s) and that removal of the mucin domain may facilitate receptor binding. The influence of CatL in Ebola virus GP receptor binding should be useful in future studies characterizing the mechanism of Ebola virus entry.  相似文献   

3.
Ebola viruses (EboV) are enveloped RNA viruses infecting cells by a pH-dependent process mediated by viral glycoproteins (GP) involving endocytosis of virions and their routing into acidic endosomes. As with well-characterized pH-dependent viral entry proteins, in particular influenza virus hemagglutinin, it is thought that EboV GP require activation by low pH in order to mediate fusion of the viral envelope with the membrane of endosomes. However, it has not yet been possible to confirm the direct role of EboV GP in membrane fusion and the requirement for low-pH activation. It was in particular not possible to induce formation of syncytia by exposing cells expressing EboV GP to acidic medium. Here, we have used an assay based on the induction of a beta-galactosidase (lacZ) reporter gene in target cells to detect cytoplasmic exchanges, indicating membrane fusion, with cells expressing EboV GP (Zaire species). Acidic activation of GP-expressing cells was required for efficient fusion with target cells. The direct role of EboV GP in this process is indicated by its inhibition by anti-GP antibodies and by the lack of activity of mutant GP normally expressed at the cell surface but defective for virus entry. Fusion was not observed when target cells underwent acidic treatment, for example, when they were placed in coculture with GP-expressing cells before the activation step. This unexpected feature, possibly related to the nature of the EboV receptor, could explain the impossibility of inducing formation of syncytia among GP-expressing cells.  相似文献   

4.
5.
Ebola virus, a member of the family Filoviridae, causes one of the most severe forms of viral hemorrhagic fever. In the terminal stages of disease, symptoms progress to hypotension, coagulation disorders, and hemorrhages, and there is prominent involvement of the mononuclear phagocytic and reticuloendothelial systems. Cells of the mononuclear phagocytic system are primary target cells and producers of inflammatory mediators. Ebola virus efficiently produces four soluble glycoproteins during infection: sGP, delta peptide (Delta-peptide), GP(1), and GP(1,2Delta). While the presence of these glycoproteins has been confirmed in blood (sGP) and in vitro systems, it is hypothesized that they are of biological relevance in pathogenesis, particularly target cell activation. To gain insight into their function, we expressed the four soluble glycoproteins in mammalian cells and purified and characterized them. The role of the transmembrane glycoprotein in the context of virus-like particles was also investigated. Primary human macrophages were treated with glycoproteins and virus-like particles and subsequently tested for activation by detection of several critical proinflammatory cytokines (tumor necrosis factor alpha, interleukin-6 [IL-6], and IL-1 beta) and the chemokine IL-8. The presentation of the glycoprotein was determined to be critical since virus-like particles, but not soluble glycoproteins, induced high levels of activation. We propose that the presentation of GP(1,2) in the rigid form such as that observed on the surface of particles is critical for initiating a sufficient signal for the activation of primary target cells. The secreted glycoproteins do not appear to play any role in exogenous activation of these cells during Ebola virus infection.  相似文献   

6.
The C-type lectins DC-SIGN and DC-SIGNR [collectively referred to as DC-SIGN(R)] bind and transmit human immunodeficiency virus (HIV) and simian immunodeficiency virus to T cells via the viral envelope glycoprotein (Env). Other viruses containing heavily glycosylated glycoproteins (GPs) fail to interact with DC-SIGN(R), suggesting some degree of specificity in this interaction. We show here that DC-SIGN(R) selectively interact with HIV Env and Ebola virus GPs containing more high-mannose than complex carbohydrate structures. Modulation of N-glycans on Env or GP through production of viruses in different primary cells or in the presence of the mannosidase I inhibitor deoxymannojirimycin dramatically affected DC-SIGN(R) infectivity enhancement. Further, murine leukemia virus, which typically does not interact efficiently with DC-SIGN(R), could do so when produced in the presence of deoxymannojirimycin. We predict that other viruses containing GPs with a large proportion of high-mannose N-glycans will efficiently interact with DC-SIGN(R), whereas those with solely complex N-glycans will not. Thus, the virus-producing cell type is an important factor in dictating both N-glycan status and virus interactions with DC-SIGN(R), which may impact virus tropism and transmissibility in vivo.  相似文献   

7.
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-γ)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2Kd-restricted CD8+ T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV.  相似文献   

8.
Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA‐bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40.  相似文献   

9.
BackgroundExtracellular surface protein disulfide isomerase-A1 (PDI) is involved in platelet aggregation, thrombus formation and vascular remodeling. PDI performs redox exchange with client proteins and, hence, its oxidation by extracellular molecules might alter protein function and cell response. In this study, we investigated PDI oxidation by urate hydroperoxide, a newly-described oxidant that is generated through uric acid oxidation by peroxidases, with a putative role in vascular inflammation.MethodsAmino acids specificity and kinetics of PDI oxidation by urate hydroperoxide was evaluated by LC-MS/MS and by stopped-flow. Oxidation of cell surface PDI and other thiol-proteins from HUVECs was identified using impermeable alkylating reagents. Oxidation of intracellular GSH and GSSG was evaluated with specific LC-MS/MS techniques. Cell adherence, detachment and viability were assessed using crystal violet staining, cellular microscopy and LDH activity, respectively.ResultsUrate hydroperoxide specifically oxidized cysteine residues from catalytic sites of recombinant PDI with a rate constant of 6 × 103 M−1 s−1. Incubation of HUVECs with urate hydroperoxide led to oxidation of cell surface PDI and other unidentified cell surface thiol-proteins. Cell adherence to fibronectin coated plates was impaired by urate hydroperoxide, as well as by other oxidants, thiol alkylating agents and PDI inhibitors. Urate hydroperoxide did not affect cell viability but significantly decreased GSH/GSSG ratio.ConclusionsOur results demonstrated that urate hydroperoxide affects thiol-oxidation of PDI and other cell surface proteins, impairing cellular adherence.General significanceThese findings could contribute to a better understanding of the mechanism by which uric acid affects endothelial cell function and vascular homeostasis.  相似文献   

10.
To investigate the interaction of herpes simplex virus type 1 (HSV-1) with the cell surface, we studied the formation of complexes by HSV-1 virion proteins with biotinylated cell membrane components. HSV-1 virion proteins reactive with surface components of HEp-2 and other cells were identified as gC, gB, and gD. Results from competition experiments suggested that binding of gC, gB, and gD occurred in a noncooperative way. The observed complex formation could be specifically blocked by monospecific rabbit antisera against gB and gD. The interaction of gD with the cell surface was also inhibited by monoclonal antibody IV3.4., whereas other gD-specific monoclonal antibodies, despite their high neutralizing activity, were not able to inhibit this interaction. Taken together, these data provide direct evidence that at least three of the seven known HSV-1 glycoproteins are able to form complexes with cellular surface structures.  相似文献   

11.
A Tyr to Cys mutation at amino acid position 723 in the cytoplasmic domain of the simian immunodeficiency virus (SIV) transmembrane (TM) molecule has been shown to increase expression of envelope glycoproteins on the surface of infected cells. Here we show that Tyr- 723 contributes to a sorting signal that directs the rapid endocytosis of viral glycoproteins from the plasma membrane via coated pits. On cells infected by SIVs with a Tyr at position 723, envelope glycoproteins were transiently expressed on the cell surface and then rapidly endocytosed. Similar findings were noted for envelope molecules expressed in the absence of other viral proteins. Immunoelectron microscopy demonstrated that these molecules were localized in patches on the cell surface and were frequently associated with coated pits. In contrast, envelope glycoproteins containing a Y723C mutation were diffusely distributed over the entire plasma membrane. To determine if an internalization signal was present in the SIV TM, chimeric molecules were constructed that contained the CD4 external and membrane spanning domains and a SIV TM cytoplasmic tail with a Tyr or other amino acids at SIV position 723. In Hela cells stably expressing these molecules, chimeras with a Tyr-723 were rapidly endocytosed, while chimeras containing other amino acids at position 723, including a Phe, were internalized at rates only slightly faster than a CD4 molecule that lacked a cytoplasmic domain. In addition, the biological effects of the internalization signal were evaluated in infectious viruses. A mutation that disrupted the signal and as a result, increased the level of viral envelope glycoprotein on infected cells, was associated with accelerated infection kinetics and increased cell fusion during viral replication. These results demonstrate that a Tyr-dependent motif in the SIV TM cytoplasmic domain can function as an internalization signal that can modulate expression of the viral envelope molecules on the cell surface and affect the biological properties of infectious viruses. The conservation of an analogous Tyr in all human and simian immunodeficiency viruses suggests that this signal may be present in other primate lentiviruses and could be important in the pathogenesis of these viruses in vivo.  相似文献   

12.
13.
14.
Activation of human T cells through the CD3-T cell receptor complex caused an augmentation in the cell surface expression of CD2 and CD5 glycoproteins. Evidence that protein kinase C is involved in the up-regulatory mechanism of these cell surface molecules has been obtained by three different approaches: (a) the changes in antigen expression were observed with activators of protein kinase C such as phorbol esters but not with activators of kinases dependent on calcium/calmodulin or cAMP; (b) the overexpression of CD2 and CD5 is also observed in cells treated with 1,2-dioctanoyl-rac-glycerol, an analogue of the physiological activator of protein kinase C; and (c) 1-(5-isoquinolinyl)-2-methylpiperazine, an inhibitor of protein kinase C but not N-(2-guanidinoethyl)-5-isoquinolinesulfonamide dihydrochloride, an inhibitor of the cAMP-dependent kinase, impairs CD2 and CD5 up-regulation. These changes in cell surface antigen expression appear to be caused by the concomitant increase in the mRNA levels for CD2 and CD5. Phosphorylation studies of the CD2 and CD5 glycoproteins indicated that the overexpression of these molecules was not associated with a specific pattern of phosphorylation since it was observed independently of their hyperphosphorylated or nonphosphorylated state.  相似文献   

15.
A new, mild method is described for spin-labelling sialic acid residues in situ. The procedure involves the formation of C-1 sialamides and has been applied to a serum glycoprotein, a mucin, tissue sections from human colon, and erythrocyte membrane components. The selectivity of the method and its possible applicability to other types of labelling are discussed.  相似文献   

16.
17.
A novel method for the detection of cell surface glycoconjugates has been developed. Cells are subjected to mild surface oxidation of vicinal hydroxyls with sodium periodate. Afterward, cellular proteins are resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted, and then probed with alkaline phosphatase hydrazide. The technique is sensitive, reproducible, and inexpensive. It obviates the need for radiolabeled NaBH4 and the subsequent processing of polyacrylamide gels for fluorography. Results are easily obtained in a matter of a few hours.  相似文献   

18.
自2014年2~3月,西非埃博拉病毒感染的暴发流行已呈播散趋势,受到世界卫生组织的高度重视。我国也提高了防止埃博拉病毒进入国内的警示,并采取了相应措施。现将有关埃博拉病毒的生物学特性、致病机制及相关流行病学与防治策略作简要综述,供参考。  相似文献   

19.
Few solution NMR pulse sequences exist that are explicitly designed to characterize carbohydrates (glycans). This is despite the essential role carbohydrate motifs play in cell-cell communication, microbial pathogenesis, autoimmune disease progression and cancer metastasis, and despite that fact that glycans, often shed to extra-cellular fluids, can be diagnostic of disease. Here we present a suite of two dimensional coherence experiments to measure three different correlations (H3-C2, H3-C1, and C1-C2) on sialic acids, a group of nine-carbon carbohydrates found on eukaryotic cell surfaces that often play a key role in disease processes. The chemical shifts of the H3, C2, and C1 nuclei of sialic acids are sensitive to carbohydrate linkage, linkage conformation, and ionization state of the C1 carboxylate. The experiments reported include rigorous filter elements to enable detection and characterization of isotopically labeled sialic acids with high sensitivity in living cells and crude isolates with minimal interference from unwanted signals arising from the ~1% (13)C-natural abundance of cellular metabolites. Application is illustrated with detection of sialic acids on living cells, in unpurified mixtures, and at the terminus of the N-glycan on the 55 kDa immunoglobulin G Fc.  相似文献   

20.
H Baumann  D Doyle 《Cell》1980,21(3):897-907
Goat antibodies directed against a subset of the externally oriented plasma membrane glycoproteins of hepatoma tissue culture (HTC) cells were used to follow the metabolic fate of the membrane antigens and the specifically bound immunoglobulin molecules in this cell type in cultures. Analyses of the immunoprecipitates from cells labeled in situ with neuraminidase and galactose oxidase, followed by reduction with tritiated sodium borohydride, indicate that about 40% of the galactose-labeled plasma membrane glycoproteins are recognized by the antiserum. Fluorescent microscopic analyses of cells treated with fluorescein-conjugated immunoglobulins and analyses of trypsin accessibility indicate that probably all of the antibodies bound to the cell surface are patched and internalized within about 4 hr when the cells are subsequently cultured at 37 degrees C in the presence of rabbit anti-goat immunoglobulins. At the same time, the antigens are also interiorized. Analyses of the cellular localization of the interiorized antigens and antibodies by cell fractionation on Percoll gradients show that the immunoglobulins to the cell surface antigens and the antigens themselves migrate to the same region of the Percoll gradient as lysosomal hydrolases. Although the antibodies bind to the cell surface glycoproteins and bring about patching and interiorization, there is no effect on the degradation of the plasma membrane antigens labeled via the galactose oxidase/borohydride reduction method. Furthermore, the iodinated antibodies directed against these membrane glycoproteins behave in their turnover properties like membrane antigens; the cell-bound specific immunoglobulins have the same half-life as the membrane glycoproteins. When the cells that had been reacted with the goat antibodies to membrane glycoprotein were cultured in the presence of rabbit anti-goat immunoglobulins, degradation of the former antibodies was effectively decreased. Similar results were obtained with concanavalin A and antibodies directed against this plant lectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号