首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium ion is a key messenger in turgor regulation of internodalcells of Lamprothamnium succinctum in response to hypoosmotictreatment. An increase in the concentration of cytosolic freecalcium ion ([Ca2+]c) is prerequisite for the turgor regulation[Okazaki and Tazawa (1990) J. Membr. Biol. 114: 189], We examinedwhether or not a calcium-dependent protein kinase (CDPK) isinvolved in the Ca2+-mediated turgor regulation of Lamprothamniumcells. A 53-kDa CDPK which phosphorylated preferentially histoneH1 but poorly myelin basic protein or casein, was detected inthe cell extract of Lamprothamnium by an in-gel protein kinaseassay. This protein kinase was detected by Western blottingand was immunoprecipitated using an anti-Dunaliella tertiolectaCDPK antibody which can neutralize the Dunaliella CDPK activity[Yuasa et al. (1995) Plant Cell Physiol. 36: 699]. The 53-kDaCDPK was partially purified from Lamprothamnium and its activitywas shown to be inhibited by the antibody and K-252a, a proteinkinase inhibitor. Microinjection of the antibody into the cytosblof Lamprothamnium cells inhibited the decrease in turgor pressurein response to hypoosmotic treatment. However, a transient increasein [Ca2+]c, which was suggested by a transient reduction ofthe velocity of cytoplasmic streaming, was induced in antibody-injectedcells after hypoosmotic treatment. Turgor regulation upon hypoosmotictreatment was inhibited when the cells were treated with K-252a.These results imply that CDPK of Lamprothamnium functions ata down-stream position of Ca2+-mobilization in processing turgorregulation in response to hypoosmotic treatment. 2 These authors contributed equally to the work.  相似文献   

2.
In response to hypotonic treatment internodal cells of the brackishwater Characeae Lamprothamnium regulate turgor pressure by releasingK+ and Cl, accompanying membrane depolarization and atransient increase in membrane electrical conductance (Okazakiet al. 1984b). The hypothesis that a transient increase in cytoplasmicfree Ca2+ concentration ([Ca2+]c) caused by hypotonic treatmenttriggers release of K+ and Cl from the cell (Okazakiand Tazawa 1986a, b, c) was tested using tonoplast-removed cells.These cells did not regulate turgor pressure. The plasmalemmaconductance remained almost constant for a change in the intracellularfree Ca2+ concentration ([Ca2+],) from 10–6 to 10–2mol?m–3. The results suggest that some cytoplasmic Ca2+-sensitizingsoluble components, which work as mediators to activate K+ and/orCl channels in the plasmalemma and/or the tonoplast,were lost after desintegration of the tonoplast. The plasmalemmapotential was depolarized under high [Ca2+]i. However, no membranedepolarization was observed upon hypotonic treatment. Sincemembrane depolarization has been suggsted to occur under normal[Ca2+]c in intact cells (Okazaki and Tazawa 1986a, b), its absencesuggests that some cytoplasmic factors, which induce the membranedepolarization in a Ca2+-independent manner, are lost in tonoplast-removedcells. 1 Present address: Department of Biology, Osaka Medical College,Sawaragi-cho 2-41, Takatsuki, Osaka 569, Japan. (Received October 22, 1986; Accepted March 31, 1987)  相似文献   

3.
Abstract. Net efflux of Cl? was measured potentiometrically (Ag/AgCl electrode) during turgor regulation which was induced by hypotonic treatment (hypotonic turgor regulation) in the alga Lamprothamnium succinctum. The efflux of Cl? reached the peak value (11 μmol m ?2s?1) several minutes after the hypotonic treatment was started and then declined. The efflux of Cl? and inhibition of the cytoplasmic streaming [reflection of an increase in cytoplasmic concentration of free Ca2+([Ca2+]c)] were blocked under a low external concentration of Ca2+ ([Ca2+]e) (0·01 mol m?3) and resumed after raising [Ca2+]e to the normal value (3·9 mol m?3). The decrease in cell-osmotic pressure upon hypotonic treatment was inhibited by lowering either turgor pressure or [Ca2h]e. The inhibition was reflected in decreases of both the efflux of Cl? and the membrane conductance. Recovery of the cytoplasmic streaming from the inhibition was also accelerated by the same treatments. It is concluded that an increase in turgor pressure is continuously sensed by the cells and that continuous presence of external Ca2+ is necessary for the hypotonic turgor regulation.  相似文献   

4.
In isolated rat pancreatic -cells, hypotonic stimulation elicited an increase in cytosolic Ca2+ concentration ([Ca2+]c) at 2.8 mM glucose. The hypotonically induced [Ca2+]c elevation was significantly suppressed by nicardipine, a voltage-dependent Ca2+ channel blocker, and by Gd3+, amiloride, 2-aminoethoxydiphenylborate, and ruthenium red, all cation channel blockers. In contrast, the [Ca2+]c elevation was not inhibited by suramin, a P2 purinoceptor antagonist. Whole cell patch-clamp analyses showed that hypotonic stimulation induced membrane depolarization of -cells and produced outwardly rectifying cation currents; Gd3+ inhibited both responses. Hypotonic stimulation also increased insulin secretion from isolated rat islets, and Gd3+ significantly suppressed this secretion. Together, these results suggest that osmotic cell swelling activates cation channels in rat pancreatic -cells, thereby causing membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels and thus elevating insulin secretion. calcium ion; swelling; patch-clamp; gadolinium  相似文献   

5.
Pulmonary vasoconstriction and vascularmedial hypertrophy greatly contribute to the elevated pulmonaryvascular resistance in patients with pulmonary hypertension. A rise incytosolic free Ca2+ ([Ca2+]cyt)in pulmonary artery smooth muscle cells (PASMC) triggers vasoconstriction and stimulates cell growth. Membrane potential (Em) regulates[Ca2+]cyt by governing Ca2+influx through voltage-dependent Ca2+ channels. Thusintracellular Ca2+ may serve as a shared signaltransduction element that leads to pulmonary vasoconstriction andvascular remodeling. In PASMC, activity of voltage-gated K+(Kv) channels regulates resting Em. In thisstudy, we investigated whether changes of Kv currents[IK(V)], Em, and[Ca2+]cyt affect cell growth by comparingthese parameters in proliferating and growth-arrested PASMC. Serumdeprivation induced growth arrest of PASMC, whereas chelation ofextracellular Ca2+ abolished PASMC growth. Resting[Ca2+]cyt was significantly higher, andresting Em was more depolarized, inproliferating PASMC than in growth-arrested cells. Consistently, wholecell IK(V) was significantly attenuated in PASMCduring proliferation. Furthermore, Emdepolarization significantly increased resting[Ca2+]cyt and augmented agonist-mediatedrises in [Ca2+]cyt in the absence ofextracellular Ca2+. These results demonstrate that reducedIK(V), depolarized Em, and elevated [Ca2+]cyt may play a criticalrole in stimulating PASMC proliferation. Pulmonary vascular medialhypertrophy in patients with pulmonary hypertension may be partlycaused by a membrane depolarization-mediated increase in[Ca2+]cyt in PASMC.

  相似文献   

6.
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores.

  相似文献   

7.
To find whether cytoplasmic streaming in Acetabularia is controlledby Ca2+, a tonoplast-permeabilized cell model was prepared usinga vacuolar perfusion technique. The cytoplasmic streaming remainedalmost normal after perfusion with EGTA medium (10 mM EGTA,40 mM PIPES, 5mM MgCl2 and 800 mM sorbitol, pH 6.9), but stoppedwithin 10 min when saponin medium (EGTA medium plus 50 µg/mlsaponin, 50 µg/ml hexokinase and 5 mM glucose) was perfused.This model system was reactivated with a solution containing0.5 mM ATP and different concentrations of Ca2+ (reactivationmedium). With the reactivation medium at pCa 6–5, theresumed streaming lasted for about 10 min before the cytoplasmaggregated. At pCa 4–3, the streaming was observed onlyfor a few minutes because the cytoplasm aggregated quickly.At pCa 7, no reactivated movement was observed. Reactivationwas not induced in an ATP- or Mg2+-deficient medium even inthe presence of an adequate concentration of Ca2+, and was inhibitedby 50 µg/ml cytochalasin B or 1 mM N-ethylmaleimide. We concluded from these observations that the cytoplasmic streamingin Acetabularia is very likely to be driven by the actomyosinsystem in the presence of Mg-ATP and Ca2+ at pCa 6–5. (Received October 31, 1984; Accepted April 1, 1985)  相似文献   

8.
Calreticulin (CRT), a Ca2+-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac apoptosis in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In the present study, the effect of overexpression of CRT on susceptibility to apoptosis under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. Under oxidative stress due to H2O2, the CRT-overexpressing cells were highly susceptible to apoptosis compared with controls. In the overexpressing cells, the levels of cytoplasmic free Ca2+ ([Ca2+]i) were significantly increased by H2O2, whereas in controls, only a slight increase was observed. The H2O2-induced apoptosis was enhanced by the increase in [Ca2+]i caused by thapsigargin in control cells but was suppressed by BAPTA-AM, a cell-permeable Ca2+ chelator in the CRT-overexpressing cells, indicating the importance of the level of [Ca2+]i in the sensitivity to H2O2-induced apoptosis. Suppression of CRT by the introduction of the antisense cDNA of CRT enhanced cytoprotection against oxidative stress compared with controls. Furthermore, we found that the levels of activity of calpain and caspase-12 were elevated through the regulation of [Ca2+]i in the CRT-overexpressing cells treated with H2O2 compared with controls. Thus we conclude that the level of CRT regulates the sensitivity to apoptosis under oxidative stress due to H2O2 through a change in Ca2+ homeostasis and the regulation of the Ca2+-calpain-caspase-12 pathway in myocardiac cells. apoptosis; calcium; endoplasmic reticulum  相似文献   

9.
The possiblerole of altered extracellular Ca2+concentration([Ca2+]o)in skeletal muscle fatigue was tested on isolated slow-twitch soleusand fast-twitch extensor digitorum longus muscles of the mouse. Thefollowing findings were made. 1) Achange from the control solution (1.3 mM[Ca2+]o)to 10 mM[Ca2+]o,or to nominally Ca2+-freesolutions, had little effect on tetanic force in nonfatigued muscle.2) Almost complete restoration oftetanic force was induced by 10 mM[Ca2+]oin severely K+-depressed muscle(extracellular K+ concentration of10-12 mM). This effect was attributed to a 5-mV reversal of theK+-induced depolarization andsubsequent restoration of ability to generate action potentials(inferred by using the twitch force-stimulation strength relationship).3) Tetanic force depressed bylowered extracellular Na+concentration (40 mM) was further reduced with 10 mM[Ca2+]o.4) Tetanic force loss at elevatedextracellular K+ concentration (8 mM) and lowered extracellular Na+concentration (100 mM) was partially reversed with 10 mM[Ca2+]oor markedly exacerbated with low[Ca2+]o.5) Fatigue induced by using repeatedtetani in soleus was attenuated at 10 mM[Ca2+]o(due to increased resting and evoked forces) and exacerbated at low[Ca2+]o.These combined results suggest, first, that raised[Ca2+]oprotects against fatigue rather than inducing it and, second, that aconsiderable depletion of[Ca2+]oin the transverse tubules may contribute to fatigue.

  相似文献   

10.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

11.
We investigated the role of intracellular Mg2+(Mgi2+) on the ATP regulation ofNa+/Ca2+ exchanger in squid axons and bovineheart. In squid axons and nerve vesicles, the ATP-upregulated exchangerremains activated after removal of cytoplasmic Mg2+, evenin the absence of ATP. Rapid and complete deactivation of theATP-stimulated exchange occurs upon readmission ofMgi2+. At constant ATP concentration, the effectof intracellular Mg2+ concentration([Mg2+]i) on the ATP regulation of exchangeris biphasic: activation at low [Mg2+]i,followed by deactivation as [Mg2+]i isincreased. No correlation was found between the above results and thelevels of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] measured innerve membrane vesicles. Incorporation ofPtdIns(4,5)P2 into membrane vesicles activates Na+/Ca2+ exchange in mammalian heart but not insquid nerve. Moreover, an exogenous phosphatase prevents MgATPactivation in squid nerves but not in mammalian heart. It is concludedthat 1) Mgi2+ is an essentialcofactor for the deactivation part of ATP regulation of the exchangerand 2) the metabolic pathway of ATP upregulation of theNa+/Ca2+ exchanger is different in mammalianheart and squid nerves.

  相似文献   

12.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

13.
Physiological and pathologicalCa2+ loads are thought to be takenup by mitochondria via a process dependent on aerobic metabolism. Wesought to determine whether human diploid fibroblasts from a patientwith an inherited defect in pyruvate dehydrogenase (PDH) exhibit adecreased ability to sequester cytosolicCa2+ into mitochondria.Mobilization of Ca2+ stores withbradykinin (BK) increased the cytosolicCa2+ concentration([Ca2+]c)to comparable levels in control and PDH-deficient fibroblasts. Innormal fibroblasts transfected with plasmid DNA encodingmitochondrion-targeted apoaequorin, BK elicited an increase inCa2+-dependent aequorinluminescence corresponding to an increase in the mitochondrialCa2+ concentration([Ca2+]mt)of 2.0 ± 0.2 µM. The mitochondrial uncoupling agent carbonyl cyanidep-(trifluoromethoxy)phenylhydrazoneblocked the BK-induced [Ca2+]mtincrease, although it did not affect the[Ca2+]ctransient. Basal[Ca2+]cand[Ca2+]mtin control and PDH-deficient cells were similar. However, confocalimaging of the potential-sensitive dye JC-1 indicated that thepercentage of highly polarized mitochondria was reduced from 30 ± 1% in normal cells to 19 ± 2% in the PDH-deficient fibroblasts. BK-elicited[Ca2+]mttransients in PDH-deficient cells were reduced to 4% of control, indicating that PDH-deficient mitochondria have a decreased ability totake up cytosolic Ca2+. Thus cellswith compromised aerobic metabolism have a reduced capacity tosequester Ca2+.

  相似文献   

14.
Polyamines are essential for cell migrationduring early mucosal restitution after wounding in the gastrointestinaltract. Activity of voltage-gated K+ channels (Kv) controlsmembrane potential (Em) that regulates cytoplasmicfree Ca2+ concentration([Ca2+]cyt) by governing thedriving force for Ca2+ influx. This study determinedwhether polyamines are required for the stimulation of cell migrationby altering K+ channel gene expression,Em, and[Ca2+]cyt in intestinal epithelialcells (IEC-6). The specific inhibitor of polyamine synthesis,-difluoromethylornithine (DFMO, 5 mM), depleted cellularpolyamines (putrescine, spermidine, and spermine), selectivelyinhibited Kv1.1 channel (a delayed-rectifier Kv channel) expression,and resulted in membrane depolarization. Because IEC-6 cells did notexpress voltage-gated Ca2+ channels, the depolarizedEm in DFMO-treated cells decreased [Ca2+]cyt as a result of reduceddriving force for Ca2+ influx through capacitativeCa2+ entry. Migration was reduced by 80% in thepolyamine-deficient cells. Exogenous spermidine not only reversed theeffects of DFMO on Kv1.1 channel expression, Em,and [Ca2+]cyt but also restoredcell migration to normal. Removal of extracellular Ca2+ orblockade of Kv channels (by 4-aminopyridine, 1-5 mM) significantly inhibited normal cell migration and prevented the restoration of cellmigration by exogenous spermidine in polyamine-deficient cells. Theseresults suggest that polyamine-dependent intestinal epithelial cellmigration may be due partially to an increase of Kv1.1 channelexpression. The subsequent membrane hyperpolarization raises[Ca2+]cyt by increasing the drivingforce (the electrochemical gradient) for Ca2+ influx andthus stimulates cell migration.

  相似文献   

15.
Addition of salicylic acid (SA) to tobacco (Nicotiana tabacum)suspension culture immediately induced a rapid and transientgeneration of superoxide anion (O2), followed by a transientincrease in cytosolic free calcium ion concentration ([Ca2+]c).The level of SA-induced O2 was lowered by treatment withseveral scavengers of active oxygen species and a peroxidaseinhibitor, but not with an NADPH oxidase inhibitor. The SA-induced[Ca2+]c elevation was also lowered by inhibitors which effectivelylowered the O2 level. Inhibition of [Ca2+]c elevationby Ca2+ channel blockers and a Ca2+ chelator indicated thatextracellular Ca2+ was responsible for the increased [Ca2+]c.Among the several SA analogs, only compounds that actively inducedthe O2 generation also elevated [Ca2+]cIn addition, theinhibitory effects of SA analogs on catalase activity correlatedwell with their effects on the O2 generation and the[Ca2+]c elevation. SA-dependent O2 generation was shownto occur extracellularly, requiring both H2O2 and at least oneproteinaceous factor excreted from the cells. This factor wasdetermined to be a salicylhydroxamic acid-sensitive extracellularguaiacol-utilizing peroxidase. 4Present address: Isehara Research Laboratory, Kanto ChemicalCo., Inc., Suzukawa, Isehara, 259-1146 Japan.  相似文献   

16.
The effect of Ca2+ and ammonia on mitochondrial NADH-glutamatedehydrogenase (GDH: EC 1.4.1.2 [EC] ) isolated from turnip root (Brassicarapa L.) activity was examined. Increasing the ammonia [(NH4)2SO4]concentration led to significant substrate inhibition whichcould be reversed by micromolar levels of Ca2+. The sensitivityof the enzyme to ammonia inhibition and its reversal by Ca2+was affected by proteolysis. After treatment with various proteases,lower concentrations of Ca2+ were capable of fully activatingthe enzyme or overcoming the inhibitory effects of high ammonium,compared to non-treated enzyme. However, the protease-treatedenzyme was still sensitive to ethylene glycol-bis(ß-aminoethylether) N,N,N',N'-tetraacetate (EGTA). In contrast, NADH-GDHactivity was inhibited approx. 30% by organic mercurials (200µm), but the residual activity was not affected by thesubsequent additions of EGTA. NADH-GDH activity could also bestimulated by additions of high concentrations of NaCl (300mM) in the absence of added Ca2+. These results suggest thathydrophobic and -SH groups may be involved in the regulationof mitochondrial NADH-GDH activity by Ca2+. 2 Present address: CSIRO Division of Horticulture, Urrbrae,S.A. 5064, Australia (Received April 18, 1990; Accepted July 23, 1990)  相似文献   

17.
Turgor regulation in the salt-tolerant alga Chara longifolia   总被引:1,自引:1,他引:0  
Chara longifolia is a salt‐tolerant Charophyte which regulates its turgor inresponse to osmotic stress. Membrane depolarization, in creased membrane conductance, and cessation of cytoplasmic streaming (due to increase in cytoplasmic Ca2 + ) precede regulation in response to hypotonic stress. Measurements of these three parameters are presented here with simultaneous turgor measurements. Variability in the occurrence, rate and extent of turgor regulation in individual cells was correlated with magnitude of the stress. Hypertonic stress showed the same slow time course as was found previously, requiring several days for complete regulation. Fifty μ M nifedipine, a Ca2 + channel blocker, inhibited turgor regulation. In the presence of 5 μ M nifedipine, turgor regulation was delayed. An increase in conductance preceded regulation, but membrane depolarization was less and no detectable change in cytoplasmic streaming was observed, requiring modifications to a previously presented model for turgor regulation. There was no significant difference in 45Ca2 + influx under control and stress conditions. However, the control flux was insensitive to nifedipine, whereas under stress the flux is inhibited 54% by nifedipine. We suggest that osmotic stress results in a rapid increase in a nifedipine‐sensitive Ca2 + entry mechanism, followed very quickly by a decrease in the control entry mechanism.  相似文献   

18.
When transcellular osmosis was induced in internodal cells ofNitella flexilis that had been rendered inexcitable by treatmentwith KCl or EGTA, the rate of cytoplasmic streaming was reducedand the membrane was depolarized. In both KCl- and EGTA-treatedcells, the endoosmosis induced a significant increase in theconcentration of Ca2+ in the cytoplasm, which was demonstratedby monitoring the emission of light from aequorin that had beeninjected into the cytoplasm. When transcellular osmosis was induced in tonoplast-free cells,in which the intracellular Ca2+ concentration had been stabilizedat a very low level by treatment with the Ca2+-chelating agentEGTA, no change in the rate of cytoplasmic streaming on theendoosmosis side was observed. Hydration of the cytoplasm in the absence of endoosmosis wasinduced by direct introduction of a hypotonic medium into thevacuole by intracellular perfusion. The results mimicked theinhibition of streaming induced by transcellular osmosis. During transcellular osmosis, chloroplasts on the endoosmosisside swelled as a result of dilution of the cell sap. Swellingof chloroplasts was demonstrated to be unrelated to the inhibitionof streaming, since streaming was retarded at sites from whichchloroplasts had been removed. It is suggested that hydration of the cytoplasm triggers themobilization of Ca2+ from internal stores and causes an increasein the level of cytoplasmic Ca2+ that is responsible for theinhibition of streaming. Possible mechanisms for the osmosis-inducedincreases in the level of Ca2+ in the cytoplasm are discussed. (Received January 11, 1993; Accepted November 8, 1993)  相似文献   

19.
Effects of cytoplasmic Ca2+ on the electrical properties ofthe plasma membrane were investigated in tonoplast-free cellsof Chara australis that had been internally perfused with media,containing either 1 mM ATP to fuel the electrogenic pump orhexokinase and glucose to deplete the ATP and stop the pump. In the presence of ATP, cytoplasmic Ca2+ up to 2.5?10–5M did not affect the membrane potential (about -190 mV), butmembrane resistance decreased uniformly with increasing [Ca2+]i.In the absence of ATP, the membrane potential, which was onlyabout -110 mV, was depolarized further by raising [Ca2+]i from1.4?10–6 to 2.5?10–5 M. Membrane resistance, whichwas nearly the twofold that of ATP-provided cells, decreasedmarkedly with an increase in [Ca2+]i from zero to 1.38?10–6M, but showed no change for further increases. Internodal cellsof Nitellopsis obtusa were more sensitive to intracellular Ca2+with respect to membrane potential than were those of Charaaustralis, reconfirming the results obtained by Mimura and Tazawa(1983). The effect of cytoplasmic Ca2+ on the ATP-dependent H+ effluxwas measured. No marked difference in H+ effluxes was detectedbetween zero and 2.5?10–5 M [Ca2+]i; but, at 10–4M the ATP-dependent H+ efflux was almost zero. Ca2+ efflux experimentswere done to investigate dependencies on [Ca2+]i and [ATP]i.The efflux was about 1 pmol cm–2 s–1 at all [Ca2+]iconcentrations tested (1.38?10–6, 2.5?10–5, 10–4M).This value is much higher than the influx reported by Hayamaet al. (1979), and this efflux was independent of [ATP]i. Thepossibility of a Ca2+-extruding pump is discussed. 1 Present address: Botanisches Institut der Universit?t Bonn,Venusbergweg 22, 5300 Bonn, F.R.G. (Received September 22, 1984; Accepted February 19, 1985)  相似文献   

20.
How the endoplasmic reticulum (ER) and mitochondria communicate with each other and how they regulate plasmalemmal Ca2+ entry were studied in cultured rat brown adipocytes. Cytoplasmic Ca2+ or Mg2+ and mitochondrial membrane potential were measured by fluorometry. The sustained component of rises in cytoplasmic Ca2+ concentration ([Ca2+]i) produced by thapsigargin was abolished by removing extracellular Ca2+, depressed by depleting extracellular Na+, and enhanced by raising extracellular pH. FCCP, dinitrophenol, and rotenone caused bi- or triphasic rises in [Ca2+]i, in which the first phase was accompanied by mitochondrial depolarization. The FCCP-induced first phase was partially inhibited by oligomycin but not by ruthenium red, cyclosporine A, U-73122, a Ca2+-free EGTA solution, and an Na+-free solution. The FCCP-induced second phase paralleling mitochondrial repolarization was partially blocked by removing extracellular Ca2+ and fully blocked by oligomycin but not by thapsigargin or an Na+-deficient solution, was accompanied by a rise in cytoplasmic Mg2+ concentration, and was summated with a high pH-induced rise in [Ca2+]i, whereas the extracellular Ca2+-independent component was blocked by U-73122 and cyclopiazonic acid. The FCCP-induced third phase was blocked by removing Ca2+ but not by thapsigargin, depressed by decreasing Na+, and enhanced by raising pH. Cyclopiazonic acid-evoked rises in [Ca2+]i in a Ca2+-free solution were depressed after FCCP actions. Thus mitochondrial uncoupling causes Ca2+ release, activating Ca2+ release from the ER and store-operated Ca2+ entry, and directly elicits a novel plasmalemmal Ca2+ entry, whereas Ca2+ release from the ER activates Ca2+ accumulation in, or release from, mitochondria, indicating bidirectional mitochondria-ER couplings in rat brown adipocytes. plasmalemmal calcium entry; calcium release; mitochondrial depolarization; FCCP  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号