首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Ultrastructure of lactating bovine and rat mammary epithelial cells was studied with emphasis on secretory vesicle interactions. In the apical zone of the cell, adjacent secretory vesicles formed ball and socket configurations at their points of apposition. Similar configurations were formed between plasma membrane and secretory vesicle membrane. These structures may be formed by the diffusion of water between vesicles with different osmotic potentials. Frequently, vesicular chains consisting of 10 or more linked secretory vesicles were observed. Prior to the exocytotic release of casein micelles, adjacent vesicles fused through fragmentation of the ball and socket membrane. These membrane fragments and the casein micelles appeared to be secreted into the alveolar lumen after passing from one vesicle into another and finally through a pore in the apical plasma membrane. Emptied vesicular chains appeared to collapse and fragmentation of their membrane was observed. Based on these observations, we suggest that most vesicular membrane does not directly contact or become incorporated into the plasma membrane during secretion of the nonfat phase of milk.  相似文献   

2.
Using the most sensitive immunocytochemical method available, on ultrathin frozen sections, the results in this paper demonstrate that bovine placental lactogen (bPL) is present in the earliest fetal binucleate cells found at 21 days post coitum in the trophectoderm. A second protein, the SBU-3 antigen, which is absent in the early stages of pregnancy appears abruptly in the binucleate cell granules at 30 days post coitum coincident with the start of villus development. Subsequently, the granules contain both bPL and the SBU-3 antigen. This sequential production of unlike proteins indicates that the binucleate cell has different functions depending on the stage of pregnancy and has important roles to play both at implantation and in villus development.  相似文献   

3.
Theta cells reported previously as a new cell type in the anterior pituitary of the mouse were examined with the electron microscope. This type of cell is distinguished by the presence of pleomorphic secretory granules, a characteristic arrangement of the rough surfaced variety of endoplasmic reticulum, a well developed Golgi complex, and an eccentrically located nucleus. The secretory granules are seen at first as small granules of low density within the Golgi vesicles. While they are within the Golgi vesicles they become larger and denser. Simultaneously they move from the proximal to the distal part of the Golgi region and finally emerge from the Golgi area as mature granules in the cytoplasm. Thus, secretory granules are always enveloped by a limiting membrane which originates from the wall of the Golgi vesicle. At the stage of granule-extrusion, the cell membrane fuses with the limiting membrane of the granules and openings in the cell membrane appear at the place of extrusion. The granules then appear to lie within inpocketings of the cell membrane. They lose their density within these inpocketings or within the cytoplasm and occasionally show fragmentation. After complete loss of density, the granules are extruded as amorphous materials to the territory outside of the cell.  相似文献   

4.
Corticotrophs of the teiid lizard Cnemidophorus lemniscatus are situated in the rostral zone of the pars distalis. In normal animals, they are usually rounded cells with slightly eccentric vesicular nuclei, especially characterized by a lucent hyaloplasm and medium-sized secretory granules of uniform high density. Granules are almost spherical, with small angular deformations, and closely bounded by a fuzzy membrane. Many cells have only a few or a moderate number of granules, with large areas of cytoplasm devoid of them; in others, granules fill the supranuclear region. The cytoplasm exhibits numerous ribosomes, often in rosettes and mostly free, a series of loosely superimposed cisternae of rough endoplasmic reticulum, small dictyosomes, and elongate mitochondria of light matrix. Metyrapone administration during 2-8 days causes dramatic alterations in corticotrophs; they become hypertrophic and extensively degranulated, with a great development of the endoplasmic reticulum and Golgi apparatus, eventually showing a row of large peripheral granules of uneven structure, enclosed in ample vesicles studded with ribosomes. A lesser degree of hypertrophy and degranulation of corticotrophs appears during the first two weeks after thyroidectomy or gonadectomy, and may be partially attributed to surgical stress. Well granulated enlarged corticotrophs, with hypertrophic endoplasmic reticulum and Golgi apparatus, are probably a result of hormonal imbalance in lizards of both sexes gonadectomized for one or two months.  相似文献   

5.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

6.
Observations of the transmitting tract cells in Trimezia fosteriana were made from the pre-secretory stage until anthesis. Secretory products appear about 14 days before anthesis in all parts of the pistil. Simultaneously starch disappears from the plastids and the dictyosomes are surrounded by more and larger vesicles than before. In the beginning of the secretory stage multivesicular bodies may be in contact with ER profiles and an ER origin is therefore presumed. Later during the secretory stage the multivesicular bodies are larger and more abundant. Their envelope is often partly fused with the plasma membrane and vesicle swarms are common on the outside of it. Close to flower opening many organelles change in appearence. RER becomes more abundant and the mitochondrial matrix highly electron dense and the cristae expanded. Starch grains reappear and large ones are common in the stigma and ovary plastids. The dictyosomes are numerous and surrounded by the largest vesicles observed during the secretory stage. Osmiophilic granules are common in the dictyo-some vesicles and under the cell walls abutting the transmitting tract. In the ovary they are present one week before anthesis. In the stigma and style corresponding granules of high electron density appears at the day of flower opening. The extracellular secretory product contains fibrillar and granular substances consisting of carbohydrates, including pectic substances, and proteins.  相似文献   

7.
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell. Immature secretory granules were converted to mature secretory granules with a half-time of approximately 45 min. This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labelling of PC12 cells followed by stimulation with high K+, which causes the release of secretogranin II, showed that not only mature, but also immature secretory granules were capable of undergoing regulated exocytosis. The kinetics of secretion of secretogranin II, as well as those of a constitutively secreted heparan sulfate proteoglycan, were reduced by treatment of PC12 cells with nocodazole, suggesting that both secretory granules and constitutive secretory vesicles are transported to the plasma membrane along microtubules. Our results imply that certain membrane proteins, e.g., those involved in the fusion of post-TGN vesicles with the plasma membrane, are sorted upon exit from the TGN, whereas other membrane proteins, e.g., those involved in the interaction of post-TGN vesicles with the cytoskeleton, may not be sorted.  相似文献   

8.
In eukaryotes, the final steps in both the regulated and constitutive secretory pathways can be divided into four distinct stages: (i) the 'approach' of secretory vesicles/granules to the PM (plasma membrane), (ii) the 'docking' of these vesicles/granules at the membrane itself, (iii) the 'priming' of the secretory vesicles/granules for the fusion process, and, finally, (iv) the 'fusion' of vesicular/granular membranes with the PM to permit content release from the cell. Recent work indicates that non-muscle myosin II and the unconventional myosin motor proteins in classes 1c/1e, Va and VI are specifically involved in these final stages of secretion. In the present review, we examine the roles of these myosins in these stages of the secretory pathway and the implications of their roles for an enhanced understanding of secretion in general.  相似文献   

9.
Recent experiments using DNA transfection have shown that secretory proteins in AtT-20 cells are sorted into two biochemically distinct secretory pathways. These two pathways differ in the temporal regulation of exocytosis. Proteins secreted by the regulated pathway are stored in dense-core granules until release is stimulated by secretagogues. In contrast, proteins secreted by the constitutive pathway are exported continuously, without storage. It is not known whether there are mechanisms to segregate regulated and constitutive secretory vesicles spatially. In this study, we examined the site of insertion of constitutive vesicles and compared it with that of regulated secretory granules. Regulated granules accumulate at tips of processes in these cells. To determine whether constitutively externalized membrane proteins are inserted into plasma membrane at the cell body or at process tips, AtT-20 cells were infected with ts-O45, a temperature-sensitive mutant of vesicular stomatitis virus in which transport of the surface glycoprotein G is conditionally blocked in the ER. After switching to the permissive temperature, insertion of G protein was detected at the cell body, not at process tips. Targeting of constitutive and regulated secretory vesicles to distinct areas of the plasma membrane appears to be mediated by microtubules. We found that while disruption of microtubules by colchicine had no effect on constitutive secretion, it completely blocked the accumulation of regulated granules at special release sites. Colchicine also affected the proper packaging of regulated secretory proteins. We conclude that regulated and constitutive secretory vesicles are targeted to different areas of the plasma membrane, most probably by differential interactions with microtubules. These results imply that regulated secretory granules may have unique membrane receptors for selective attachment to microtubules.  相似文献   

10.
The ultrastructure of the parathyroid glands of adult Japanese lizards (Takydromus tachydromoides) in the spring and summer season was examined. The parenchyma of the gland consists of chief cells arranged in cords or solid masses. Many chief cells contain numerous free ribosomes and mitochondria, well-developed Golgi complexes, a few lysosome-like bodies, some multivesicular bodies and relatively numerous lipid droplets. The endoplasmic reticulum is mainly smooth-surfaced. Cisternae of the rough endoplasmic reticulum are distributed randomly in the cytoplasm. Small coated vesicles of 700-800 Å in diameter are found occasionally in the cytoplasm, especially in the Golgi region. The chief cells contain occasional secretory granules of 150-300 nm in diameter that are distributed randomly in the cytoplasm and lie close to the plasma membrane. Electron dense material similar to the contents of the secretory granules is observed in the enlarged intercellular space. These findings suggest that the secretory granules may be discharged into the intercellular space by an eruptocrine type of secretion. Coated vesicles (invaginations) connected to the plasma membrane and smooth vesicles arranged in a row near the plasma membrane are observed. It is suggested that such coated vesicles may take up extracellular proteins. The accumulation of microfilaments is sometimes recognized. Morphological evidence of synthetic and secretory activities in the chief cells suggests active parathyroid function in the Japanese lizard during the spring and summer season.  相似文献   

11.
Swiatek P 《Tissue & cell》2006,38(4):263-270
By the end of previtellogenesis, the oocytes of Glossiphonia heteroclita gradually protrude into the ovary cavity. As a result they lose contact with the ovary cord (which begins to degenerate) and float freely within the hemocoelomic fluid. The oocyte's ooplasm is rich in numerous well-developed Golgi complexes showing high secretory activity, normal and transforming mitochondria, cisternae of rER and vast amounts of ribosomes. The transforming mitochondria become small lipid droplets as vitellogenesis progresses. The oolemma forms microvilli, numerous coated pits and vesicles occur at the base of the microvilli, and the first yolk spheres appear in the peripheral ooplasm. A mixed mechanism of vitellogenesis is suggested. The eggs are covered by a thin vitelline envelope with microvilli projecting through it. The envelope is formed by the oocyte. The vitelline envelope is produced by exocytosis of vesicles containing two kinds of material, one of which is electron-dense and seems not to participate in envelope formation. The cortical ooplasm of fully grown oocytes contains many cytoskeletal elements (F-actin) and numerous membrane-bound vesicles filled with stratified content. Those vesicles probably are cortical granules. The follicle cells surrounding growing oocytes have the following features: (1) they do not lie on a basal lamina; (2) their plasma membrane folds deeply, forming invaginations which eventually seem to form channels throughout their cytoplasm; (3) the plasma membrane facing the ovary lumen is lined with a layer of dense material; and (4) the plasma membrane facing the oocyte forms thin projections which intermingle with the oocyte microvilli. In late oogenesis, the follicle cells detach from the oocytes and degenerate in the ovary lumen.  相似文献   

12.
The granular glands of nine species of dendrobatid frogs were examined using light and electron microscopy. The glands are surrounded by a discontinuous layer of smooth muscle cells. Within the glands proper the secretory cells form a true syncytium. Multiple flattened nuclei lie at the periphery of the gland. The peripheral cytoplasm also contains mitochondria, rough surfaced endoplasmic reticulum, the Golgi apparatus, and an abundance of smooth endoplasmic reticulum. Centrally, most of the gland is filled with membrane-bound granules surrounded by amorphous cytoplasm. Few other organelles are found in this region. Early in the secretory cycle, the central part of the gland is filled with flocculent material which appears to be progressively partitioned off by membranes to form the droplet anlage. As granules form, the structure of the contents becomes progressively more vesicular. Dense vesicles, which bud off from the Golgi apparatus, fuse with the granular membrane during the development of granules, and might contain enzymes involved in toxin synthesis. The granules at this point resemble multivesicular bodies. Their structure is similar in all species of dendrobatid frogs even though the different frogs secrete substances of different chemical structure and toxicity.  相似文献   

13.
Human blood group A antigenicity of glycoproteins is retained on epon-embedded jejunum sections after glutaraldehyde fixation and osmium treatment. The intracellular location of molecules bearing these determinants was visualized in the four types of epithelial cells of A+ rabbit jejunum sections with immuno-colloidal gold labeling. The brush border membrane and in particular the glycocalyx of absorbing cells as well as the secretory granules of goblet and Paneth cells were heavily labeled. In enteroendocrine cells, the membrane of secretory granules and not their content was lightly labeled. The differential labeling of secretory or membrane bound glycoproteins is accompanied by different labels of the Golgi complex as expected if labeling of the Golgi saccules was due to the presence of glycoproteins in transit. In all cases the label is primarily concentrated in only half the cisternae on the trans side of the Golgi stacks. In absorbing cells, structures have been revealed in the terminal web that could be related to the brush border membrane and consequently implicated in its biogenesis. The fibrillar material of the glycocalyx appears as highly labeled tangled structures which apparently proceed from densely stained "carrier" vesicles arising from the Golgi apparatus. Vesicles fusing at the lower part of microvilli could result of integration of this material into the lightly labeled vesicles strictly found in the terminal web. These last vesicles could also contain newly synthesized brush border hydrolases.  相似文献   

14.
Amelogenesis in the tooth germs of the frog Rana pipiens was examined by electron microscopy at different stages of tooth development. Cellular changes in secretory ameloblasts during this process showed many basic similarities to those in mammalian amelogenesis. Amelogenesis can be divided into three stages based on histological criteria such as thickness of enamel and the relative position of the tooth germ within the continuous succession of teeth. These stages are early, transitional and late. The fine structure of the enamel-secreting cells reflects the functional role of these ameloblasts as primarily secretory in the early stage, possibly transporting in the late stage and reorganizing between the two functions in the transitional stage. In early amelogenesis the cell exhibits well-developed granular endoplasmic reticulum, Golgi complex, microtubules, dense granules, smooth and coated vesicles, lysosome-like bodies in supranuclear and distal portions of the cell and mitochondria initially concentrated in the basal part of the cell. Numerous autophagic vacuoles are observed concomitant with the loss of some cell organelles at the transitional stage. During late amelogenesis the ameloblasts exhibit numerous vesicles, granules, convoluted cell membranes, junctional complexes and widely distributed mitochondria. Toward the end of amelogenesis, cells become oriented parallel to the enamel surface and the number of organelles is reduced. Amelogenesis in the frog is an extracellular process and mineralization seems to occur simultaneously with matrix formation.  相似文献   

15.
The formation of dense core secretory granules is a multistage process beginning in the trans Golgi network and continuing during a period of granule maturation. Direct interactions between proteins in the membrane and those in the forming dense core may be important for sorting during this process, as well as for organizing membrane proteins in mature granules. We have isolated two mutants in dense core granule formation in the ciliate Tetrahymena thermophila, an organism in which this pathway is genetically accessible. The mutants lie in two distinct genes but have similar phenotypes, marked by accumulation of a set of granule cargo markers in intracellular vesicles resembling immature secretory granules. Sorting to these vesicles appears specific, since they do not contain detectable levels of an extraneous secretory marker. The mutants were initially identified on the basis of aberrant proprotein processing, but also showed defects in the docking of the immature granules. These defects, in core assembly and docking, were similarly conditional with respect to growth conditions, and therefore are likely to be tightly linked. In starved cells, the processing defect was less severe, and the immature granules could dock but still did not undergo stimulated exocytosis. We identified a lumenal protein that localizes to the docking-competent end of wildtype granules, but which is delocalized in the mutants. Our results suggest that dense cores have functionally distinct domains that may be important for organizing membrane proteins involved in docking and fusion.  相似文献   

16.
J F Marín  J Boya 《Acta anatomica》1991,141(3):225-232
The postnatal development of the interstitial agranulated cells (so-called palisade cells) of the pars intermedia in the cat was investigated immunocytochemically and at the ultrastructural level. Since the first postnatal days, a strong vimentin immunoreactivity and a weaker S-100 protein immunoreactivity were detected in the marginal cells lining the pituitary cleft and in the interstitial bipolar cells located within the pars intermedia. No glial fibrillary acidic protein cells have been found in the pars intermedia of any of the animals studied. This immunocytochemical pattern was maintained throughout the postnatal development. Ultrastructurally these cells showed a vast number of cytoplasmic filaments and well-developed junctional complexes. Secretory granules were never seen. In older animals they lined microcavities and microchannels where they project microvilli and present pinocytotic vesicles on their apical surface. No transitional forms between these cells and granulated secretory cells were found. There is a large number of axons and synaptic endings in contact with the granulated secretory cells. From our findings we guess that palisade cells are not a glial derivative, but they may share a common origin with secretory granulated cells.  相似文献   

17.
Conventional and freeze-fracture electron microscopy, immuno-electron microscopy of ovarian cryosections and confocal immunofluorescence were used to analyze the ovarian distribution of the major protein classes being secreted by the follicle cells during the vitellogenic and choriogenic stages of Drosophila oogenesis. Our results clearly demonstrated that at vitellogenic stages the follicle cells co-secrete constitutively vitelline membrane and yolk proteins that are either sorted into distinct secretory vesicles or they are segregated in different parts of bipartite vesicles by differential condensation. Following their exocytosis only the vitelline membrane proteins are incorporated into the forming vitelline membrane. The yolk proteins (along with their hemolymph circulating counterparts) diffuse through gaps amongst the incomplete vitelline membrane and are internalized through endocytosis by the oocyte where they are finally stored into modified lysosomes referred to as alpha-yolk granules. The unexpected immunolocalization of vitelline membrane antigens in the associated body of the alpha-yolk granules may indicate that this structure is a transient repository for the proteins being internalized into the oocyte along with the yolk proteins. In the early choriogenic follicle cells the vitelline membrane and early chorion proteins were found to be co-secreted and to be evenly intermixed into the same secretory vesicles. These findings illuminate new details concerning the follicle cells secretory and oocyte endocytic pathways and provide for the first time evidence for condensation-mediated sorting of constitutively secreted proteins in Drosophila.  相似文献   

18.
ECL cells are numerous in the rat stomach. They produce and store histamine and chromogranin-A (CGA)-derived peptides such as pancreastatin and respond to gastrin with secretion of these products. Numerous electron-lucent vesicles of varying size and a few small, dense-cored granules are found in the cytoplasm. Using confocal and electron microscopy, we examined these organelles and their metamorphosis as they underwent intracellular transport from the Golgi area to the cell periphery. ECL-cell histamine was found to occur in both cytosol and secretory vesicles. Histidine decarboxylase, the histamine-forming enzyme, was in the cytosol, while pancreastatin (and possibly other peptide products) was confined to the dense cores of granules and secretory vesicles. Dense-cored granules and small, clear microvesicles were more numerous in the Golgi area than in the docking zone, i.e. close to the plasma membrane. Secretory vesicles were numerous in both Golgi area and docking zone, where they were sometimes seen to be attached to the plasma membrane. Upon acute gastrin stimulation, histamine was mobilized and the compartment size (volume density) of secretory vesicles in the docking zone was decreased, while the compartment size of microvesicles was increased. Based on these findings, we propose the following life cycle of secretory organelles in ECL cells: small, electron-lucent microvesicles (pro-granules) bud off the trans Golgi network, carrying proteins and secretory peptide precursors (such as CGA and an anticipated prohormone). They are transformed into dense-cored granules (approximate profile diameter 100 nm) while still in the trans Golgi area. Pro-granules and granules accumulate histamine, which leads to their metamorphosis into dense-cored secretory vesicles. In the Golgi area the secretory vesicles have an approximate profile diameter of 150 nm. By the time they reach their destination in the docking zone, their profile diameter is between 200 and 500 nm. Exocytosis is coupled with endocytosis (membrane retrieval), and microvesicles in the docking zone are likely to represent membrane retrieval vesicles (endocytotic vesicles).  相似文献   

19.
The nuclear cap in the spermatogonial and early spermatocyte cells of Gelastocoris is an aggregate of closely packed mitochondria with their long axes perpendicular to the nuclear membrane. Eventually in the early growth period, the mitochondria move from the cap and appear to become more or less equally distributed in the cytoplasm where they remain until their fusion in the spermatid to form the nebenkern. The Golgi complex consists of clusters of lamellae and vesicles, the Golgi bodies. Granules form within the vesicles, increase in size, move from their place of origin and become distributed at random in the cytoplasm. They are the pro-acrosomal granules and at the end of the growth period fuse to form the proacrosome, about which Golgi bodies collect. The Golgi bodies, however, never fuse into an acroblast. At one end of the oval-shaped pro-acrosome is a small dark body and a less dense vesicle the future of which is uncertain. The dark body eventually occupies a position at the tip of the acrosome. The pro-acrosome, after moving to the side of the nucleus opposite the nebenkern, differentiates into the acrosome which elongates into a tail-like structure. The nuclear membrane of some spermatocytes may appear wave-like in cross section, with the crest and trough different in appearance. Near the membrane and in the troughs of the waves large clusters of granules are frequently present. Similar clusters may be found elsewhere in the cytoplasm. Presumably they had their origin near the membrane but this is not conclusive. Bodies of indeterminate origin and structure may be present in the cytoplasm. They could be lysosomes but evidence is lacking. In late spermatocytes and in spermatids, a group of ten or twelve granules is present. They are smaller than the pro-acrosomal granules, are always closely associated and pass as a group into the tail. Their significance is unknown. The endoplasmic reticulum is typical of cells in general. There are no granule accumulations within the vesicles as in some secretory cells. Vesicles of various shapes and sizes are present within the centrosphere of the first meiotic division. While their location is similar to that of the centriole, the identity of the vesicles is uncertain.  相似文献   

20.
Summary In the course of electron microscopic investigations of the fundus mucosa of the mouse stomach, a few cells of an unknown type were found by chance in the deep portions of the glands. These cells are characterized by two different kinds of specific granules in their cytoplasm, one of which being large and less dense, and the other one being small and dense. The large less dense granules resemble zymogen granules of the chief cell, which are formed by the rough endoplasmic reticulum and Golgi system. The small dense granules are quite similar to the secretory granules of the basal granulated cell, and are considered to be formed in the Golgi complex. Release figures of the small dense granule were not observed, numerous granules, however, were observed in close contact with the basal cell membrane. The occurrence of these two kinds of granules in one cell suggests that the basal granulated cell and the zymogenic cell originate from the same entodermal stem element.The author cordially thanks Professor Dr. Hisao Fujita, Department of Anatomy, Hiroshima University School of Medicine, for his kind advices and criticisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号