首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently a dapF mutant of Escherichia coli lacking the diaminopimelate epimerase was found to have an unusual large LL-diaminopimelic acid (LL-DAP) pool as compared with that of meso-DAP (C. Richaud, W. Higgins, D. Mengin-Lecreulx, and P. Stragier, J. Bacteriol. 169:1454-1459, 1987). In this report, the consequences of high cellular LL-DAP/meso-DAP ratios on the structure and metabolism of peptidoglycan were investigated. For this purpose new efficient high-pressure liquid chromatography techniques for the separation of the DAP isomers were developed. Sacculi from dapF mutants contained a high proportion of LL-DAP that varied greatly with growth conditions. The same was observed with the two DAP-containing precursors, UDP-N-acetylmuramyl-tripeptide and UDP-N-acetylmuramyl-pentapeptide. The limiting steps for the incorporation of LL-DAP into peptidoglycan were found to be its addition to UDP-N-acetylmuramyl-L-alanyl-D-glutamate and the formation of the D-alanyl-DAP cross-bridges. The Km value of the DAP-adding enzyme for LL-DAP was 3.6 x 10(-2) M as compared with 1.1 x 10(-5) M for meso-DAP. When isolated sacculi were treated with Chalaropsis N-acetylmuramidase and the resulting soluble products were analyzed by high-pressure liquid chromatography, the proportion of the main peptidoglycan dimer was lower in the dapF mutant than in the parental strain. Moreover, the proportion of LL-DAP was higher in the main monomer than in the main dimer, where it was almost exclusively located in the donor unit. There are thus very few D-alanyl-LL-DAP cross-bridges, if any. We also observed that large amounts of LL-DAP and N-succinyl-LL-DAP were excreted in the growth medium by the dapF mutant.  相似文献   

2.
The peptidoglycan of a number of strains of Neisseria gonorrhoeae and Escherichia coli turned over during exponential growth as monitored by the loss of radioactivity (supplied as [14C]glucosamine) from SDS-insoluble material. However, no turnover of the peptide side chains of E. coli peptidoglycan was observed (monitored by diamino[3H]pimelic acid) even though turnover of glycan material was occurring. Turnover rates of 9 to 15% per generation were recorded for all the N. gonorrhoeae strains studied except for the autolytic variant RD5 which showed a higher rate of turnover (20 to 26% per generation). In contrast to previous interpretations, these rates of turnover were not affected by benzylpenicillin, unless sufficient antibiotic was present to affect culture turbidity, when lysis occurred. Examination of the fragments (monomer, dimer and their O-acetylated counterparts, and oligomers) produced by Chalaropsis B muramidase treatment of prelabelled peptidoglycan revealed that no fraction of the peptidoglycan was immune from turnover. However, peptidoglycan pulse-labelled for only 10 min did not show immediate turnover. The lapse of time before turnover commenced was strain dependent, with a maximum value of 1.5 generations. This work confirms that the peptidoglycan of N. gonorrhoeae undergoes a period of maturation and suggests that only mature peptidoglycan turns over.  相似文献   

3.
4.
5.
A group of Escherichia coli mutants which are ampicillin resistant at 32 C and which either are unable to grow or lyse at 42 C has been selected. These mutants have been classified by a number of characteristics: total peptidoglycan synthesis measured by [(14)C]diaminopimelic acid incorporation, extent of cross-linking of the peptidoglycan which is synthesized, growth characteristics at the two temperatures, and morphology. Two especially interesting groups of mutants have been described. In one of these, a hypo-cross-linked peptidoglycan was synthesized at the nonpermissive temperature. Most of these organisms lysed at 42 C. In another group, the peptidoglycan synthesized at 42 C was hyper-cross-linked. Many of these organisms were spherical. Studies of revertants indicated that ampicillin resistance, temperature sensitivity, cross-linking, growth characteristics, and morphological changes may be related to a single mutational event in both of these groups.  相似文献   

6.
Two new mutations are described which, together, eliminate essentially all the aminotransferase activity required for de novo biosynthesis of tyrosine, phenylalanine, and aspartic acid in a K-12 strain of Escherichia coli. One mutation, designated tyrB, lies at about 80 min on the E. coli map and inactivates the "tyrosine-repressible" tyrosine/phenylalanine aminotransferase. The second mutation, aspC, maps at about 20 min and inactivates a nonrespressible aspartate aminotransferase that also has activity on the aromatic amino acids. In ilvE- strains, which lack the branched-chain amino acid aminotransferase, the presence of either the tyrosine-repressible aminotransferase or the aspartate aminotransferase is sufficient for growth in the absence of exogenous tyrosine, phenylalanine, or aspartate; the tyrosine-repressible enzyme is also active in leucine biosynthesis. The ilvE gene product alone can reverse a phenylalanine requirement. Biochemical studies on extracts of strains carrying combinations of these aminotransferase mutations confirm the existence of two distinct enzymes with overlapping specificities for the alpha-keto acid analogues of tyrosine, phenylalanine, and aspartate. These enzymes can be distinguished by electrophoretic mobilities, by kinetic parameters using various substrates, and by a difference in tyrosine repressibility. In extracts of an ilvE- tyrB- aspC- triple mutant, no aminotransferase activity for the alpha-keto acids of tyrosine, phenylalanine, or aspartate could be detected.  相似文献   

7.
8.
9.
Complete separation of glycerophosphate acyltransferase and 1-acylglycerophosphate acyltransferase from Escherichia coli was obtained by sequential extraction with Triton X-100. Solubilized glycerophosphate acyltransferase was reconstituted by the cholate dispersion and gel filtration method in small unilamellar vesicles. 1-Acylglycerophosphate acyltransferase could not be solubilized from the membranes and was used in endogenous membrane fragments after detergent removal. Mixing of the two preparations and subsequent incubation in the presence of glycerol 3-phosphate, palmitoyl-CoA and oleoyl-CoA resulted in the efficient synthesis of phosphatidic acid. Inclusion of exogenous lysophosphatitic acid in the assay medium resulted in a dilution of the newly synthesized lysophosphatidate. By contrast, the synthesis of phosphatidic acid from glycerol 3-phosphate by the acyltransferases present in native membrane vesicles was barely influenced by the presence of exogenous lysophosphatidic acid. When comparing the utilization of membrane-associated 14C-labeled and newly generated 3H-labeled lysophosphatidic acid, the latter appeared to be the preferred substrate. These results indicate that lysophosphatidic acid, synthesized by glycerophosphate acyltransferase, is utilized by 1-acylglycerophosphate acyltransferase without prior mixing with the total membrane-associated pool of lysophosphatidic acid, and suggest a close proximity of the two enzymes in native E. coli membranes. This property of the acyltransferases is lost upon separation and reconstitution of enzyme activities.  相似文献   

10.
A temperature-sensitive mutant of Escherichia coli defective in peptidoglycan synthesis was characterized. The incorporation of radiolabeled meso-diaminopimelate into peptidoglycan by the mutant was inhibited at the restrictive growth temperature, resulting in autolysis. The defective step appeared to be part of the terminal stage in peptidoglycan synthesis involving the incorporation of disaccharide peptide units into the wall peptidoglycan. The mutation was assigned to a new locus, designated murH, at 99.2 min on the E. coli linkage map.  相似文献   

11.
Membrane-derived oligosaccharides (MDO) consist of branched substituted beta-glucan chains and are present in the periplasmic space of Escherichia coli and other gram-negative bacteria. A procedure for the isolation of mutants defective in MDO synthesis is described. Their phenotype was compared with a mdoA mutant previously identified, and they are mapped in the mdoA region. Mutants lacking MDO showed imparied chemotaxis on tryptone swarm plates, a reduced number of flagella, and an enhanced expression of the OmpC porin. Revertants able to form swarm rings again had regained the ability to synthesize MDO and showed the wild-type porin pattern. A second group of chemotactic revertants were mutated in the ompB gene region involved in osmoregulation, and they were still devoid of MDO. These findings provide evidence for a link between MDO biosynthesis and other functions of E. coli related to its adaptation to the environment.  相似文献   

12.
As one of the final steps in the bacterial growth cycle, daughter cells must be released from one another by cutting the shared peptidoglycan wall that separates them. In Escherichia coli, this delicate operation is performed by several peptidoglycan hydrolases, consisting of multiple amidases, lytic transglycosylases, and endopeptidases. The interactions among these enzymes and the molecular mechanics of how separation occurs without lysis are unknown. We show here that deleting the endopeptidase PBP 4 from strains lacking AmiC produces long chains of unseparated cells, indicating that PBP 4 collaborates with the major peptidoglycan amidases during cell separation. Another endopeptidase, PBP 7, fulfills a secondary role. These functions may be responsible for the contributions of PBPs 4 and 7 to the generation of regular cell shape and the production of normal biofilms. In addition, we find that the E. coli peptidoglycan amidases may have different substrate preferences. When the dd-carboxypeptidase PBP 5 was deleted, thereby producing cells with higher levels of pentapeptides, mutants carrying only AmiC produced a higher percentage of cells in chains, while mutants with active AmiA or AmiB were unaffected. The results suggest that AmiC prefers to remove tetrapeptides from peptidoglycan and that AmiA and AmiB either have no preference or prefer pentapeptides. Muropeptide compositions of the mutants corroborated this latter conclusion. Unexpectedly, amidase mutants lacking PBP 5 grew in long twisted chains instead of straight filaments, indicating that overall septal morphology was also defective in these strains.  相似文献   

13.
Incorporation of an analoque into MS2 coded proteins prevents the maturation of phages. In addition, there is an alteration in the relative amount of coat protein to replicase protein synthesized, which supports the hypothesis that normal coat protein serves a physiological role as a translation repressor. Further, abnormal proteins, synthesized from the phage genome, are degraded, presumably by a host catabolic system, more rapidly than the normal gene products.  相似文献   

14.
An in vitro peptidoglycan synthesis reaction was employed to further characterize the role of the tolM product in colicin M-induced inhibition of peptidoglycan synthesis. It was found that the tolM product is not the colicin M target and that this gene product does not play a role in the interaction of the colicin with its target. Colicin M remained associated with envelopes prepared from colicin-treated tolM mutants. These findings suggested that the tolM product most likely is involved with the internalization of colicin M.  相似文献   

15.
Dual enzyme activities for the biosynthesis of peptidoglycan of the cell wall are located in major higher molecular weight penicillin-binding proteins (PBP) of Escherichia coli. Each of these proteins catalyzes the two successive final reactions in the synthesis of cross-linked peptidoglycan from the precursor N-acetylglucosaminyl-N-acetylmuramyl peptide linked to undecaprenol diphosphate; namely, the transglycosylation that extends the glycan chain and the penicillin-sensitive DD-transpeptidation that cross-links the glycan chains through two peptide side chains. Both transglycosylation and transpeptidation catalyzed by PBP-1Bs represent de novo synthesis of cross-linked peptidoglycan. Under appropriate conditions, about 25% cross-linkage was observed during the reaction, the main reaction product supposedly being a regularly cross-linked network of peptidoglycan. The two domains for the transglycosylase and transpeptidase activities were found to be located on a 50-kDa portion of the PBP-1Bs, which are about 90 kDa. Gene recombination experiments indicated that the transglycosylase domain is located upstream, i.e. on the N-terminal side of the transpeptidase domain, suggesting that the gene for these bifunctional peptides may have been formed by fusion of the genes for transglycosylase and transpeptidase that were previously located separately on the chromosome in this order.  相似文献   

16.
A mecillinam-sensitive peptidoglycan crosslinking reaction in Escherichia coli   总被引:11,自引:0,他引:11  
The amidinopenicillin, mecillinam, induces the formation of spherical cells of Escherichia coli by inactivation of penicillin-binding protein 2 (PBP2). A mecillinam-sensitive peptidoglycan crosslinking reaction has been demonstrated in particulate membrane preparations from this organism. The activity was detected in membranes that contained elevated levels of PBP2 and in which crosslinking reactions due to all other PBPs had been inactivated with the cephamycin antibiotic, cefmetazole. The particulate membrane preparation catalyzed synthesis of peptidoglycan that was up to 20% crosslinked from nucleotide precursors. Crosslinkage of the peptidoglycan was inhibited 50% by 0.2 μg mecillinam per ml but was not inhibited by much higher concentrations of cephamycins, which have very low affinity for PBP2. The crosslinking reaction appears to be due to the transpeptidase activity of PBP2, which is implicated in the mechanism of cell shape determination, and is the killing target for mecillinam.  相似文献   

17.
18.
We have produced several mutants of Escherichia coli thioredoxin (Trx) using a combined mutagenesis/chemical modification technique. The protein C32S, C35S, L78C Trx was produced using standard mutagenesis procedures. After unfolding the protein with guanidine hydrochloride (GdmCl), the normally buried cysteine residue was modified with a series of straight chain aliphatic thiosulfonates, which produced cysteine disulfides to methane, ethane, 1-n-propane, 1-n-butane, and 1-n-pentane thiols. These mutants all show native-like CD spectra and the ability to activate T7 gene 5 protein DNA polymerase activity. In addition, all mutants show normal unfolding transitions in GdmCl solutions. However, the midpoint of the transition, [GdmCl]1/2, and the free energy of unfolding at zero denaturant concentration, delta G(H2O), give inverse orders of stability. This effect is due to changes in m, the dependence of delta G0 unfolding on the GdmCl concentration. The method described here may be used to produce unnatural amino acids in the hydrophobic cores of proteins.  相似文献   

19.
20.
The effect of mecillinam, a beta-lactam antibiotic that specifically binds penicillin-binding protein 2 of Escherichia coli, causes transition from rod to coccal shape, and inhibits cell division in sensitive cells, has been tested on three different E. coli temperature-sensitive cell division mutants. At the nonpermissive temperature, the antibiotic allows an increase in cell number for strains BUG6 and AX655 but not for AX621. In strain AX655, the cell division stimulation was observed only if the antibiotic was added immediately after shifting to the nonpermissive temperature, whereas in BUG6, the rise in cell number was observed also when mecillinam was added after 90 min of incubation at the nonpermissive temperature. In all cases, cell division began occurring 30 min after addition of the antibiotic. Mecillinam had no effect on division of dnaA, dnaB temperature-sensitive mutants or on division of BUG6 derivatives made resistant to this antibiotic. Other beta-lactam antibiotics such as penicillin, ampicillin, cephalexin, and piperacillin and non beta-lactam antibiotics such as fosfomycin, teichomycin, and vancomycin that inhibit cell wall synthesis did not show any effect on cell division for any of the mutants. The response of the three cell division mutants to mecillinam is interpreted in terms of a recently proposed model for shape regulation in bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号