首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procollagen N-proteinase, the enzyme which cleaves the NH2-terminal propeptides from type I procollagen, was purified over 15,000-fold from extracts of chick embryos by chromatography on columns of DEAE-cellulose, concanavalin A-agarose, heparin-agarose, pN-collagen-agarose, and a filtration gel. The purified enzyme had an apparent molecular weight of 320,000 as estimated by gel filtration and a pH optimum for activity of 7.4 to 9.0. The enzyme was inhibited by metal chelators and the thiol reagent dithiothreitol. Addition of calcium was required for maximal activity under the standard assay conditions, and the presence of calcium decreased thermal inactivation at 37 degrees C. The purified enzyme cleaved a homotrimer of pro-alpha 1(I) chains, an observation which indicated that the presence of pro-alpha 2(I) chain is not essential for the enzymic cleavage of NH2-terminal propeptides. Previous observations suggesting that the enzyme requires a substrate with a native conformation were explored further by reacting the enzyme with type I procollagen at different temperatures. Type I procollagen from chick embryo fibroblasts became resistant to cleavage at about 43 degrees C. Type I procollagen from human skin fibroblasts, which was previously shown to have a slightly lower thermal stability than chick embryo type I procollagen, became resistant to cleavage at temperatures that were about 2 degrees C lower. The results suggested that the enzyme is a sensitive probe for the three-dimensional structure of the NH2-terminal region of the procollagen molecule and that it requires the protein substrate to be triple helical.  相似文献   

2.
Proteolytic cleavage of procollagen I to collagen I is essential for the formation of collagen fibrils in the extracellular matrix of vertebrate tissues. Procollagen is cleaved by the procollagen N- and C-proteinases, which remove the respective N- and C-propeptides from procollagen. Procollagen processing is initiated within the secretory pathway in tendon fibroblasts, which are adept in assembling an ordered extracellular matrix of collagen fibrils in vivo. It was thought that intracellular processing was restricted to the TGN (trans-Golgi network). In the present study, brefeldin A treatment of tendon explant cultures showed that N-proteinase activity is present in the resulting fused ER (endoplasmic reticulum)-Golgi compartment, but that C-proteinase activity is restricted to the TGN in embryonic chick tendon fibroblasts. In late embryonic and postnatal rat tail and postnatal mouse tail tendon, C-proteinase activity was detected in TGN and pre-TGN compartments. Preventing activation of the procollagen N- and C-proteinases with the furin inhibitor Dec-RVKR-CMK (decanoyl-Arg-Val-Lys-Arg-chloromethylketone) indicated that only a fraction of intracellular procollagen cleavage was mediated by newly activated proteinases. In conclusion, the N-propeptides are removed earlier in the secretory pathway than the C-propeptides. The removal of the C-propeptides in post-Golgi compartments most probably indicates preparation of collagen molecules for fibril formation at the cell-matrix interface.  相似文献   

3.
Type I/II procollagen N-proteinase was partially purified from chick embryos and used to examine the rate of cleavage of a series of purified type I procollagens synthesized by fibroblasts from probands with heritable disorders of connective tissue. The rate of cleavage was normal with procollagen from a proband with osteogenesis imperfecta that was overmodified by posttranslational enzymes. Therefore, posttranslational overmodification of the protein does not in itself alter the rate of cleavage under the conditions of the assay employed. Cleavage of the procollagen, however, was altered in several procollagens with known mutations in primary structure. Two of the procollagens had in-frame deletions of 18 amino acids encoded by exons 11 and 33 of the pro alpha 2(I) gene. In both procollagens, both the pro alpha 1(I) and the pro alpha 2(I) chains were totally resistant to cleavage. With a procollagen in which glycine-907 of the alpha 2(I) chain domain was substituted with aspartate, both pro alpha chains were cleaved but at a markedly decreased rate. The results, therefore, establish that mutations that alter the primary structure of the pro alpha chains of procollagen at sites far removed from the N-proteinase cleavage site can make the protein resistant to cleavage by the enzyme. The long-range effects of in-frame deletions or other changes in amino acid sequence are probably explained by their disruption of the hairpin structure that is formed by each of the three pro alpha chains in the region containing the cleavage site and that is essential for cleavage of the procollagen molecule by N-proteinase.  相似文献   

4.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

5.
Type II procollagen messenger ribonucleic acid (mRNA) was isolated from chick sternum and rat chondrosarcoma cells and translated in a reticulocyte lysate cell-free system. A high molecular weight band was identified as type II procollagen by gel electrophoresis, collagenase digestion, and specific immunoprecipitation. The translation of type II mRNA was specifically inhibited by addition of type I procollagen amino-terminal extension peptide. When this peptide was added to the media of cultured fetal calf chondrocytes, chick sternal chondrocytes, or chick tendon fibroblasts, no inhibition of collagen synthesis was evident. These data suggest a general regulation of collagen biosynthesis by these peptides in the cell-free translation system. However, as indicated by the cell culture experiments, cellular characteristics and evolutionary divergence of animal species seem to restrict the effect of the peptides.  相似文献   

6.
《The Journal of cell biology》1985,101(5):1930-1940
We have isolated highly purified coated vesicles from 17-d-old chick embryo skeletal muscle. These isolated coated vesicles contain acetylcholinesterase (AChE) in a latent, membrane-protected form as demonstrated enzymatically and morphologically using the Karnovsky and Roots histochemical procedure (J. Histochem. Cytochem., 1964, 12:219- 221). By the use of appropriate inhibitors the cholinesterase activity can be shown to be specific for acetylcholine. It also can be concluded that most of the AChE represents soluble enzyme since it is rendered soluble by repeated freeze-thaw cycles. To determine the origin of the coated vesicle-associated AChE, we have isolated coated vesicles from cultured chick embryo myotubes which have been treated with diisopropylfluorophosphate, an essentially irreversible inhibitor of both intra- and extracellular AChE, and have been allowed to recover for 3 h. This time is not enough to allow any newly synthesized AChE to be secreted. These coated vesicles also contain predominantly soluble AChE. These data are compatible with the hypothesis that coated vesicles are important intermediates in the intracellular transport of newly synthesized AChE.  相似文献   

7.
An enzymatic activity, capable of removing the COOH-terminal extensions of type I chick procollagen, has been demonstrated in embryonic chick tendons and in cultured tendon fibroblasts utilizing two new methods of analysis. The protease was purified by a combination of ultrafiltration concanavalin A affinity chromatography and gel filtration. The isolated protein has an apparent Mr of 43,000 by gel filtration and sodium dodecyl sulfate gel electrophoresis. The enzyme shows a major pH optimum at 4.2 and is susceptible to inhibitors such as pepstatin and leupeptin; it therefore seems related to the cathepsins. The possibility that this enzyme plays a role in the limited proteolytic processing of procollagen is discussed.  相似文献   

8.
《The Journal of cell biology》1983,97(6):1724-1736
Polyclonal antibodies were raised in a rabbit against the major proteoglycan of chick sternal cartilage. A total of six antisera was obtained, three after the first booster injection (A1, A2, and A3) and three after the second booster injection (A4, A5, and A6). The A1 antiserum, which was characterized in most detail, immunoprecipitated native as well as chondroitinase ABC-digested or chondroitinase ABC/keratanase-digested cartilage proteoglycan synthesized by cultured chick chondroblasts, but failed to immunoprecipitate the major proteoglycan synthesized by chick skin fibroblasts. This antiserum was also able to immunoprecipitate the cartilage proteoglycan core protein newly synthesized by cultured chondroblasts, but no other major cell protein. However, the late bleed antisera obtained from the same rabbit after a second booster injection reacted with a new chondroblast- specific polypeptide(s) of approximately 60,000 mol wt in addition to the cartilage proteoglycan. By immunofluorescence procedures, the A1 antiserum stained the extracellular proteoglycan matrix of cultured chondroblasts but not that of skin fibroblasts. Following enzymatic removal of the extracellular matrix and cell membrane permeabilization, this antiserum stained primarily a large, juxtanuclear structure. Additional radioautographic evidence suggests that this structure represents the Golgi complex. Similar immunofluorescent staining with antibodies to the cartilage-characteristic Type II collagen revealed that type II procollagen was localized in numerous cytoplasmic, vacuole- like structures which were scattered throughout most of the chondroblast cytoplasm but were notably scanty in the Golgi complex area. In conclusion, our data suggest the transit of the major cartilage proteoglycan through the Golgi complex of cultured chondroblasts and possible differences in the intracellular distribution of newly synthesized cartilage proteoglycan and Type II procollagen.  相似文献   

9.
Three possible mechanisms are considered to account for the variations of post-translational modifications in different collagen types. 1) The cells have different amounts of post-translational modifying enzymes, 2) the rate of prolylhydroxylation of different procollagen types is varied, and 3) the rate of chain association of pro-alpha chains of different collagen types is modulated. In an attempt to examine the three possibilities, we have determined the activities of prolyl hydroxylase and lysyl hydroxylase, and we have examined the kinetics of the secretion of procollagens and the kinetics of pro-gamma chain formation of different procollagen types in matrix-free cells isolated from tissues of 17-day-old chick embryos. Type II collagen synthesized by cartilage cells contains more hydroxylysine than type I collagen synthesized by tendon and cornea cells. It was found, however, that cartilage cells contain significantly less lysyl hydroxylase than tendon and cornea cells. In contrast, we found only a small difference in the amount of prolyl hydroxylase in tendon, cornea, and cartilage cells. The secretion of type I procollagen by tendon and cornea cells can be described by two first order processes. In contrast, the secretion of type II procollagen by cartilage cells, type IV procollagen by lens cells, and type V procollagen by cornea cells can be described by single first order processes. Examination of the formation of pro-gamma components of procollagen types I and II revealed that it occurs via intermediate dimers of two pro-alpha chains. The formation or pro-gamma(I) chains in tendon and cornea cells is about three times faster than the formation of pro-gamma(II) chains in cartilage cells. These results are consistent with the hypothesis that the rate of association of pro-alpha chains regulates the synthesis of procollagens with different degrees of post-translational modifications.  相似文献   

10.
Freshly isolated embryonic chick tendon fibroblasts were incubated in suspension culture for six hrs in the presence or absence of ammonium chloride or chloroquine. Both agents caused a marked reduction in collagen production without inhibiting non-collagen protein synthesis. The small amounts of collagen synthesized in the presence of each agent were secreted into the culture medium at rates significantly lower than exhibited by control cells. Since ammonium chloride and chloroquine have been shown to inhibit lysosomal degradation of proteins, and interfere with the fusion of membranous vesicles and receptor recycling, these results suggest a requirement for at least one of these processes in the synthesis and secretion of procollagen.  相似文献   

11.
D Cockayne  K R Cutroneo 《Biochemistry》1988,27(8):2736-2745
Nuclei were isolated from control and dexamethasone-treated (2 h) embryonic chick skin fibroblasts and transcribed in vitro. Nuclei isolated from dexamethasone-treated fibroblasts transcribed less pro alpha 1(I) and pro alpha 2(I) mRNAs but not beta-actin mRNA. Fibroblasts receiving dexamethasone and [5,6-3H]uridine also demonstrated decreased synthesis of nuclear type I procollagen mRNAs but not beta-actin mRNA. In fibroblasts treated with cycloheximide the newly synthesized nuclear type I procollagen mRNA species were markedly decreased. An enhanced inhibitory effect was observed when fibroblasts were treated with cycloheximide plus dexamethasone. Since the studies above demonstrate that active protein synthesis is required to maintain the constitutive expression of the type I procollagen genes, we determined if glucocorticoids regulate DNA-binding proteins with sequence specificity for the alpha 2(I) procollagen gene. Nuclear protein blots were probed with the 32P-end-labeled pBR322 vector DNA and 32P-end-labeled alpha 2(I) procollagen promoter containing DNA. Nonhistone proteins remained bound to labeled DNA at stringency washes of 0.05 and 0.1 M NaCl. As the ionic strength was increased to 0.2 and 0.3 M NaCl, the nonhistone-protein DNA binding was preferentially lost. Only the low molecular weight proteins remained bound to labeled DNA at the highest ionic strength, indicating nonspecific binding of these nuclear proteins. Dexamethasone treatment resulted in an increase of binding of nonhistone proteins to vector- and promoter-labeled DNAs over that observed in control fibroblasts at stringency washes of 0.05 and 0.1 M NaCl and to a lesser extent at 0.2 M NaCl. The binding specificities of nonhistone proteins for the alpha 2(I) procollagen promoter containing DNA were calculated. Three nonhistone DNA-binding proteins of Mr 90,000, 50,000, and 30,000 had altered specificities following dexamethasone treatment.  相似文献   

12.
The enzymatic conversion of chick embryo cranial bone procollagen was studied in vitro using procollagen proteases isolated from the culture medium of chick tendon fibroblasts. During the normal conversion process, chains intermediate in length between proα and α chains, as well as the COOH-terminal extension peptides, can be identified. Underglycosylated procollagen, synthesized by bones treated with an inhibitor of protein glycosylation (tunicamycin), was processed by these proteases in a manner similar to that of intact procollagen. However, medium from cells cultured with tunicamycin lacked the COOH-terminal procollagen protease activity; this did not result from a direct inhibition of the protease by the drug. Concanavalin A also inhibited the conversion of procollagen to collagen by fibroblasts in culture. In an in vitro system, Concanavalin A inhibited the COOH-terminal procollagen protease, and this inhibition was reversed by methyl-α-d-glucopyranoside. These data suggest that the COOH-terminal procollagen protease contains oligosaccharide side chains that are recognized by concanavalin A and that tunicamycin affects the secretion, activity, or activation of the enzyme.  相似文献   

13.
Procollagen is more stable in cellulo than in vitro   总被引:1,自引:0,他引:1  
The thermal denaturation of both intracellular and freshly secreted chick embryo tendon type I procollagen was investigated using susceptibility to proteolysis by trypsin and chymotrypsin as a probe for triple-helical conformation. Freshly secreted procollagen from the medium of matrix-free tendon cells in suspension or procollagen within the cells and in the pericellular environment melted at 45 degrees C. In contrast, if freshly secreted procollagen was subjected to the melting procedure after dialysis of the medium against 0.4 M NaCl, 0.1 M Tris HCl, pH 7.4 the protein melted at 42 degrees C, the melting temperature of purified procollagen dissolved in the same buffer. In each of these cases, the thermal denaturation profile was narrow, with a width of 1.0-1.5 degrees C. These results demonstrate that, in situ, procollagen is more stable toward thermal denaturation than was previously thought. This extra margin of thermal stability partially resolves the dilemma of how tissues are able to assemble triple-helical procollagen molecules at body temperatures that closely approach the melting temperature of the purified protein.  相似文献   

14.
D S Neblock  R A Berg 《Biochemistry》1986,25(20):6208-6213
The synthesis and secretion of procollagen in embryonic chick tendon fibroblasts in suspension culture were inhibited with the carboxylic ionophore monensin. The synthesis of procollagen was inhibited by 50% in a 2-h exposure to 0.1 microM monensin and was inhibited by 70% in a 6-h exposure to 0.1 microM monensin. Secretion of procollagen was inhibited by greater than 90% in the 0.1 microM monensin-treated cultures and was totally inhibited by higher doses of the reagent. A cellular pool of collagenase-digestible peptides was demonstrated in the control cells, the level of which was elevated 3-4 times in the monensin-treated cultures. In order to determine whether the secretory and synthesis block caused by monensin inhibited intracellular degradation of newly synthesized collagen, the hydroxy[14C]proline in degraded collagen fragments present in control and monensin-treated cultures was determined and compared to the total hydroxy[14C]proline synthesized in each culture. The intracellular degradation of newly synthesized, pulse-labeled collagen was shown to proceed at rates comparable to those seen in the control cultures. The monensin-treated cells degraded pulse-labeled newly synthesized collagen nearly twice as long as the controls, resulting in an overall increase in the fraction of newly synthesized collagen that was degraded. These findings suggest that force generation in the activated cross-bridge cycle may occur as a result of an actin-attached cross-bridge transition between these two orientations.  相似文献   

15.
We present, here, evidence for a pretranslational role of procollagen propeptides in the regulation of collagen synthesis. Amino- and carboxyl-terminal type I procollagen propeptides were isolated and purified from chick calvaria and tendon cultures. Human lung fibroblasts (IMR-90) were incubated in medium containing varying concentrations of propeptides. Amino-propeptides at 10 nM caused an 80% decrease in collagen synthesis compared to control. Higher concentrations of amino-propeptides did not decrease collagen synthesis further and no significant effect on non-collagen synthesis was found throughout the entire concentration range. Carboxyl-propeptides also inhibited collagen synthesis. At 10 nM, collagen synthesis was decreased by 30% and a concentration of 40 nM caused an 80% reduction. However, at the latter concentration non-collagen synthesis was also affected, decreasing by 20% relative to control. To assess possible pretranslational effects of propeptides, IMR-90 fibroblasts were treated with varying concentrations of each propeptide and levels of type I procollagen mRNA was determined by dot hybridization with a 32P-alpha 2(I) cDNA probe. Both propeptides caused significant concentration-dependent decreases in procollagen type I mRNA levels. At 10 nM, the amino-propeptide resulted in a 55% decrease in collagen mRNA levels while at 40 nM these levels decreased by 72% compared to control. Carboxyl-propeptides were also inhibitory, decreasing mRNA levels by 33% at 10 nM and 73% at 40 nM. Messenger RNA levels of a representative noncollagenous protein, beta-actin, were unaffected by either propeptide throughout the concentration range.  相似文献   

16.
Bleomycin treatment of primary chick skin fibroblasts and chick lung fibroblasts resulted in a selective dose-dependent increase of cell layer procollagen synthesis. Solid support hybridization of total cellular RNA to 32P-labeled pro-alpha 1(I) and pro-alpha 2(I) cDNAs did not indicate an increase of total cellular procollagen type I mRNAs in bleomycin-treated cells. However, bleomycin treatment of chick skin fibroblasts causes a redistribution of procollagen type I mRNAs within the nuclear, cytoplasmic, and polysomal subcellular fractions. Both the nuclear and cytoplasmic procollagen type I mRNAs are significantly decreased in concentration after bleomycin administration. In contrast, the polysomal procollagen type I mRNAs are significantly increased in both chick skin and lung fibroblasts treated with bleomycin. Administration of dexamethasone to bleomycin-treated fibroblasts resulted in a reversal of the bleomycin-induced increase in cell layer procollagen synthesis. The increased amounts of polysomal procollagen type I mRNAs in bleomycin-treated cells were also reduced by subsequent administration of dexamethasone. These data indicate that bleomycin treatment of chick skin and chick lung fibroblasts results in a specific increase in procollagen synthesis in the cell layer which is mediated by elevated levels of polysomal type I procollagen mRNAs via a repartitioning of these mRNAs within the fibroblast. Furthermore, dexamethasone reverses the bleomycin-induced elevations of both cell layer procollagen synthesis and polysomal type I procollagen mRNAs.  相似文献   

17.
Peptidyl-prolyl cis-trans-isomerase accelerates otherwise slow, rate-limiting isomerization steps during folding of proteins in vitro, but is not yet securely identified with any specific physiologic role. Peptidyl-prolyl cis-trans-isomerase and the cyclosporin A (CsA)-binding protein cyclophilin are identical, and peptidyl-prolyl cis-trans-isomerase activity is inhibited by the immunosuppressive drug CsA in vitro. To establish a possible physiologic role of peptidyl-prolyl cis-trans-isomerase, we have studied the folding of procollagen I in suspended chick embryo tendon fibroblasts. Folding of procollagen I is slowed by CsA: the time needed for 50% of the molecules to reach a completely helical confirmation is 8.5 min in the absence and 13.5 min in the presence of 5 microM CsA; and the calculated products, k x K, of the rate constant (k) and the equilibrium constant (K) of peptidyl-prolyl cis-trans isomerization are 2.10 and 1.30 s-1, respectively. In contrast, folding of purified collagen III in vitro is unaffected by CsA. In cultured human fibroblasts, CsA caused posttranslational overmodification (hydroxylation of lysine 32.1 versus 22.1%) and increased intracellular degradation (18.7 versus 12.5%), and hence decreased production (10.2 versus 13.2% of total protein synthesis) of collagens I and III, indicating that procollagen folding is slowed by CsA also in human fibroblasts. We conclude that peptidyl-prolyl cis-transisomerase (and hence cyclophilin) accelerates protein folding in living cells. Furthermore, the CsA-induced changes in collagen metabolism are reminiscent of those observed in several variants of osteogenesis imperfecta caused by structural abnormalities in the pro-collagen chains which impair helix formation.  相似文献   

18.
A rapid assay procedure was developed for cleavage of the N-terminal propeptides of procollagen. With the assay a neutral procollagen N-protease was purified about 300-fold from chick embryo tendon extract. The enzyme had an apparent molecular weight of 260 000 and a pH optimum of 7.4. Ca2+ was required for enzymic activity but this requirement was partially replaced by Mg2+ or Mn2+. The enzyme was bound to concanavalin A-agarose and therefore was presumably a glycoprotein. The N-propeptides released from type I procollagen were of about 23 000 and 11 000 daltons as estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The partially purified enzyme was also found to cleave type II procollagen and the N-propeptide obtained was about 18 000 daltons. Heat denaturation of either type I or type II procollagen decreased the rate at which the proteins were cleaved by the N-protease.  相似文献   

19.
Coated vesicles are present in the myoplasm of embryonic chick myotubes grown in vitro. They are most numerous beneath regions of the surface membrane that contain a high density of acetylcholine receptors (AChR). Prolonged exposure of myotubes to saline extract of chick brain increases the number of intracellular AChR and the number of coated vesicles. This suggests that coated vesicles contain AChR, and this hypothesis was tested with horseradish peroxidase-alpha-bungarotoxin (HRP-alpha BTX) conjugates. The conjugates enter saponin-permeabilized cells and, as judged by the inhibition of [125I] alpha BTX binding, they label the entire intracellular AChR pool. Approximately 50% of the coated vesicles contained HRP-alpha BTX reaction product. In addition, reaction product was detected in Golgi cisternae and along membranes that bound a subsurface tubulovesicular network. The majority of labeled vesicles are probably involved in exocytosis rather than endocytosis of AChR because very few coated vesicles were labeled when HRP-alpha BTX was added to the medium bathing intact cells. Moreover, inhibition of protein synthesis with puromycin resulted in a large decrease in the number of labeled vesicles. These results suggest that a subpopulation of coated vesicles ferry newly synthesized AChR to the cell surface.  相似文献   

20.
The secretion of unhydroxylated procollagen at 37° by isolated chick tendon fibroblasts independent of protein synthesis was examined. The data showed that intact molecules were secreted and that their degradation was an extracellular event. The kinetics of secretion indicated that most of the secreted procollagen appeared in the medium during the initial 30 min following inhibition of protein synthesis and only an additional 35% reached the extracellular space in the subsequent 90 min. The pattern of secretion suggested the existence of an intracellular binding site for the unhydroxylated molecules which was saturated during the early period of secretion. It is speculated that such a binding site could be the enzyme prolyl hydroxylase which has a high affinity for unhydroxylated procollagen at 37°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号