首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Opioid activities and structures of alpha-casein-derived exorphins   总被引:2,自引:0,他引:2  
Exorphins, peptides with opioid activity, have previously been isolated from pepsin hydrolysates of alpha-casein [Zioudrou, C., Streaty, R. A., & Klee, W. A. (1979) J. Biol. Chem. 254, 2446-2449]. Analysis of these peptides shows that they correspond to the sequences 90-96, Arg-Tyr-Leu-Gly-Tyr-Leu-Glu, and 90-95, Arg-Tyr-Leu-Gly-Tyr-Leu, of alpha-casein. These peptides, as well as two of their analogues Tyr-Leu-Gly-Tyr-Leu-Glu (91-96) and Tyr-Leu-Gly-Tyr-Leu (91-95), have now been synthesized and characterized. Their opioid activity was examined by three different bioassays: (a) displacement of D-2-alanyl[tyrosyl-3,5-3H]enkephalin-(5-L-methioninamide) and [3H]dihydromorphine from rat brain membranes; (b) naloxone-reversible inhibition of adenylate cyclase in homogenates of neuroblastoma x glioma hybrid cells; (c) naloxone-reversible inhibition of electrically stimulated contractions of the mouse vas deferens. The synthetic peptide of sequence 90-96 was the most potent opioid in all three bioassays and its potency was similar to that of the isolated alpha-casein exorphins. The synthetic peptides were totally resistant to hydrolysis by trypsin and homogenates of rat brain membranes, but were partially inactivated by chymotrypsin and subtilisin. The difference in opioid activity of alpha-casein exorphins may be related to differences in conformational flexibility observed by NMR spectroscopy.  相似文献   

2.
The effects of substituting the enkephalin moiety of dynorphin with the dermorphin sequence were studied on the receptor preference, analgesic, and peripheral opioid potencies by using synthetic dermorphin-dynorphin hybrid peptides as the probe. Replacement of the enkephalin moiety of dynorphin with the dermorphin or dermorphin1-5 sequences caused a remarkable increase in analgesic potency, and a 3-6 fold increase in potency of binding against [3H]-dihydromorphine. The potency of receptor binding against [3H]-EKC was also increased by incorporation of the whole dermorphin sequence into the dynorphin molecule. In the presence of NaCl (100 mM), the effect of enhancing binding against [3H]-EKC due to dermorphin substitution disappeared, suggesting the contribution of opioid mu-receptor. Peripheral opioid activities assayed by various smooth muscle preparations showed that dermorphin incorporation caused a decreased in the potency of inhibition of the contractions of the guinea pig ileum and the rabbit vas deferens, no change in potency on the mouse vas deferens, and a marked increase in the inhibition of the rat vas deferens. Among the peripheral opioid activities only that assayed with the rat vas deferens appears to correlate approximately with the analgesic and the receptor binding activities. Judging from the relative potencies obtained from all assays, it is evident that the N-terminal dermorphin moiety, but not the C-terminal dynorphin fragment, dominates the opioid activity and receptor preference of the hybrid peptide.  相似文献   

3.
Photolabile derivatives of D-Ala2-Leu5-enkephalin were prepared by synthetic procedures in which a 2-nitro-4-azidophenyl group is linked to the terminal carboxyl group of the enkephalin by means of an ethylenediamine or ethylenediamine beta-alanine spacer. These peptides bind to opiate receptors with nanomolar affinities and inhibit electrically stimulated contractions of the mouse vas deferens and adenylate cyclase activity of NG108-15 neuroblastoma x glioma hybrid cell membranes. Both inhibitions are reversed by the opiate antagonist naloxone. Photolysis of the ligands bound to rat brain membranes results in the loss of approximately 50% of the receptor sites. This decrease in receptor number is blocked by naloxone and requires light. A photolabile [3H]enkephalin derivative labels an equivalent number of sites under similar irradiation conditions.  相似文献   

4.
T Oka  K Negishi 《Life sciences》1982,31(16-17):1707-1710
Evidence is provided for the abilities of endogenous 6-(Arg or Lys)-opioid peptides to interact with kappa-receptors as agonists. Dynorphin-(1-17) and -(1-8), alpha- and beta-neo-endorphin, [Met5]-enkephalin-Arg6-Phe7 and des acetyl salmon endorphin I significantly inhibited the electrically-evoked contractions of rabbit vas deferens which had been shown to contain kappa-receptors exclusively, indicating that endogenous 6-(Arg or Lys)-opioid peptides could act on kappa-receptors as agonists. Additionally, the inhibition of contractions of rabbit vas deferens by 6-(Arg or Lys)-opioid peptides was antagonized more effectively by Mr 2266 which had a high affinity to both mu- and kappa-receptors, than naloxone which had a high affinity only to mu-receptors. This also suggested that 6-(Arg or Lys)-opioid peptides acted as kappa-receptor agonists. The rank order of the inhibitory potency of 6-(Arg or Lys)-opioid peptides against contractions of rabbit vas deferens was as follows: dynorphin-(1-17) greater than alpha-neo-endorphin greater than beta-neo-endorphin .=. dynorphin-(1-8) greater than des acetyl salmon endorphin I greater than [Met5]-enkephalin-Arg6-Phe7. Since other endogenous opioid peptides such as [Met5]- and [Leu5]-enkephalin and beta-endorphin have been shown not to act on kappa-receptors as agonist, data in the present study suggest that endogenous opioid peptides can be classified into two groups in terms of an ability to interact with kappa-receptors as an agonist.  相似文献   

5.
Three new fentanyl analogs (compounds 3-4-5) have been synthesized and evaluated for antinociceptive properties using the writhing test. The analgesic property of the active compound, N-[1-phenylpyrazol-3-yl]-N-[1-(2-phenethyl)-4-piperidyl)] propenamide (compound 4), was tested using the hot plate test in mice. Its opioid agonistic activity was characterized using three isolated tissues: guinea pig ileum, mouse vas deferens, and rabbit vas deferens. Compound 4 was as effective as fentanyl or morphine and it showed less antinociceptive potency than fentanyl but it was more potent than morphine. The duration of the antinociception was similar to that of fentanyl. This compound inhibited the electrically evoked contractions of myenteric plexus-longitudinal muscle strips of guinea pig ileum and of mouse vas deferens but not those of rabbit vas deferens. These effects could be reversed by micro selective antagonists (naloxone and/or CTOP) but not by the delta selective antagonist naltrindole, thus indicating that the compound acted as a micro opioid agonist. Finally, the binding data confirmed that compound 4 had high affinity and selectivity for the micro-receptor.  相似文献   

6.
An early prediction of sperm competition theory was that males should adjust the number of sperm they deliver according to the risk of double mating and this has received empirical support in recent years. It has been suggested that adaptive regulation of sperm delivery in mammals may depend on changes in vas deferens contractility. In laboratory mice, the vas deferens is sensitive to opioid agonists and the secretion of endogenous opioid peptides can be affected by social interactions that may be predictive of sperm competition risk. The present experiment was conducted to determine whether morphine, an opioid agonist (at the mu-receptor), has different effects on electrically evoked contractions of the isolated vas deferens in two congeneric rodent species differing in sperm competition intensity. Morphine inhibited contractions of the vas deferens in the non-monogamous deer mouse (Peromyscus maniculatus) but not the monogamous California mouse (Peromyscus californicus). This implies that the vas deferens of P. maniculatus possesses functional mu-receptors and, thus, should be able to respond to changes in the circulating levels of endogenous agonists whose secretion can be affected by social interactions predictive of sperm competition risk.  相似文献   

7.
A pituitary endorphin with novel properties.   总被引:4,自引:0,他引:4  
We describe the further purification of an opioid peptide from a porcine pituitary concentrate. The peptide has typical naloxone-reversible opioid activity in the guinea pig ileum myenteric-plexus preparation and mouse vas deferens, and it inhibits stereospecific binding at opiate receptors. It is distinguished from β-endorphin and the enkephalins by its apparent molecular weight, its slow reversal with washing in the guinea pig ileum preparation, and the resistance of its biologic activity to cyanogen bromide treatment. In beef pituitary, slow-reversing, cyanogen bromide resistant activity is found principally in neurointermediate lobe.  相似文献   

8.
The synthesis of some [Leu5]enkephalin derivatives is described in which D-glucose has been linked to the opioid pentapeptide through the ester bond involving the carboxyl function at the C-terminal with C-1 or C-6 of the D-glucopyranose moiety. Enkephalin derivatives were assayed for opioid activity and found to be full agonists in bioassays based on inhibition of electrically evoked contractions of the guinea pig ileum (GPI) and of the mouse vas deferens (MVD). The obtained results suggest that the opioid activity of the tested glucoconjugates depend upon the ester bond position in the molecule. Whereas 1-O conjugate 5 was somewhat more potent than [Leu5]enkephalin in the GPI assay, the 6-O conjugates, with the exception of 1-O-benzyl derivative 11, were considerably less potent. All enkephalin derivatives were delta-receptor selective; in particular, the acetylated analog 8 was three times more delta-receptor selective than [Leu5]enkephalin.  相似文献   

9.
G J Trachte 《Life sciences》2001,69(24):2833-2844
Natriuretic peptides are produced in cardiovascular, renal and neural tissues and are believed to reduce arterial blood pressure by augmenting sodium and water loss in the urine. Another potential antihypertensive action of these peptides involves a suppression of adrenergic neurotransmission. Atrial, brain and C-type natriuretic peptides suppress sympathetic neurotransmission but no data are available on neuromodulatory actions of urodilatin. This study investigates the hypothesis that urodilatin and brain natriuretic peptide inhibit sympathetic neurotransmission by elevating guanylyl cyclase activity. Both brain natriuretic peptide and urodilatin suppressed force generation in response to electrical stimulation of the vas deferens. Brain natriuretic peptide accelerated the production of cyclic guanosine monophosphate equipotently with its effects on neurotransmission. However, urodilatin failed to increase guanylyl cyclase activity, thus dissociating its effects on neurotransmission from guanylyl cyclase stimulation. None of the natriuretic peptides altered contractile effects of either adenosine triphosphate or norepinephrine, the two putative neurotransmitters secreted from adrenergic nerves in the vas deferens. These data are consistent with the following conclusions: 1) all of the known endogenous natriuretic peptides suppress adrenergic neurotransmission; 2) guanylyl cyclase activation is not required for the inhibition of sympathetic neurotransmission by natriuretic peptides; and 3) inhibitory effects of the natriuretic peptides on neurotransmission result from a suppression of neurotransmitter exocytosis. The novel findings of this study include both the suppression of sympathetic neurotransmission by urodilatin and its biological activity in the absence of guanylyl cyclase activation.  相似文献   

10.
Possible coupling of bovine adrenal medullary opioid receptors to islet-activating protein (IAP, pertussis toxin)-sensitive GTP-binding proteins was investigated by studying effects of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and IAP treatment of membranes on opioid binding. Gpp(NH)p inhibited [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE) binding by increasing the dissociation constant of [3H]DADLE and membranes, and enhanced slightly [3H]diprenorphine binding. IAP treatment of membranes reduced [3H]DADLE binding and abolished almost completely the Gpp(NH)p inhibition of [3H]DADLE binding. Treatment of membranes with IAP and [32P]NAD resulted in radio-labeling of membrane proteins of approximately 39,000 dalton. DADLE inhibited adenylate cyclase activity in rat brain caudate nucleus. However, DADLE, beta-endorphin, levorphanol and dynorphin A(1-13) did not show any significant inhibitory action on bovine adrenal medullary adenylate cyclase activity. These results suggest that bovine adrenal medullary opioid (DADLE) receptors are linked to IAP-sensitive GTP-binding proteins which are not directly coupled to adenylate cyclase.  相似文献   

11.
Peptide III-BTD has been recently identified as a non-selective nociceptin/orphanin FQ receptor ligand by screening of a synthetic peptide combinatorial library. In the present study we evaluated the pharmacological profile of peptide III-BTD in isolated tissues (mouse and rat vas deferens, guinea pig ileum) sensitive to both nociceptin and opioid peptides. In the mouse vas deferens and guinea pig ileum, III-BTD concentration dependently inhibited the electrically induced twitch (pEC50 5.91 and 6.18, respectively; Emax 94 +/- 1% and 94 +/- 2%) and this effect was blocked by naloxone (1 microM). In the rat vas deferens, III-BTD was inactive in most of the tissues, while in few others it elicited a slight inhibition only at the highest concentration tested (10 microM). In the presence of 1 microM naloxone, 1 microM III-BTD shifted to the right the concentration response curve of nociceptin in a parallel manner, showing pKB values in the range 6.6-6.9. These data confirm on native nociceptin receptors the pharmacological profile of peptide III-BTD which behaved as a mixed nociceptin receptor antagonist/opioid receptor agonist in the [35S]GTPyS binding assay performed on cells expressing the recombinant human receptors.  相似文献   

12.
Several peptides of diverse structure, reported to possess high affinity and selectivity for the delta opioid receptor, were studied using the mouse isolated vas deferens preparation to determine the effect of peptidase inhibition on their apparent potency. The peptides evaluated included [Leu5] enkephalin, the cyclic enkephalin analogs [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Pen2,p-F-Phe4,D-Pen5]enkephalin (F-DPDPE), the linear enkephalin analogs [D-Ala2,D-Leu5]enkephalin (DADLE) and [D-Ser2(O-tBu), Leu5,Thr6]enkephalin (DSTBULET), and the naturally occurring amphibian peptides Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 (dermenkephalin), Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2 (deltorphin I) and Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2 (deltorphin II). Concentration-response curves were determined for each peptide in the absence and presence of a combination of the peptidase-inhibiting agents bacitracin, bestatin, and captopril. A wide range of potencies was observed, both in the control state and in the presence of peptidase inhibition. The synthetic enkephalin analogs demonstrated small increases in potency with peptidase inhibition (no increase in the case of DPDPE), whereas the naturally occurring peptides were markedly increased in potency, up to as much as 123-fold for dermenkephalin. In the presence of peptidase inhibition, deltorphin II was the most potent peptide tested (IC50 = 1.13 x 10(-10) molar), and as such is the most potent delta opioid agonist reported to date. Stability to metabolism must be considered in the design and evaluation of in vitro experiments using peptides of this type.  相似文献   

13.
We found that the sequences YPLDL and YPLDLF in the large subunit of spinach D-ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) met the structure YP-aliphatic amino acid which might have opioid activity. We then synthesized these peptides to test their opioid activity. The IC(50) of these peptides in mouse vas deferens assay were 51.0 microM and 24.4 microM, respectively, and those in delta receptor binding assay using [(3)H]deltorphin II as radioligand were 2.09 microM and 0.93 microM, respectively. Both peptides were selective for delta receptor. We named them rubiscolin-5 and -6, respectively. Rubiscolin-5 and -6 have antinociceptive activity in mice after i.c.v. or oral administration. The enzymatic conditions to release rubiscolin were investigated using both spinach Rubisco and synthetic fragment peptides. This is the first example of bioactive peptides derived from plant Rubisco.  相似文献   

14.
R S Chang  V J Lotti 《Life sciences》1983,32(22):2603-2609
The beta-adrenergic antagonist, [3H]-dihydroalprenolol ([3H] DHA), binds to membranes prepared from the rat vas deferens in a specific and saturable manner. Scatchard and Hill plot analysis indicates a single class of binding sites with no evidence of cooperative interactions. The specific binding sites have a high affinity (Kd = 0.3 nM) and a maximal occupancy estimated to be 460 fmoles [3H]-DHA bound/g wet tissue weight. Beta-adrenergic agonists and/or antagonists inhibit [3H]-DHA binding to rat vas deferens membranes in a stereospecific manner and with a relative order of potency expected for beta-adrenergic receptors of the beta2 subtype. The receptor affinities of various beta-adrenergic antagonists in the rat vas deferens determined using inhibition of [3H]-DHA binding correlated with their receptor affinities determined physiologically using antagonism of isoproterenol-induced inhibition of neurogenic contractions in-vitro.  相似文献   

15.
Conventional opioids including opioid peptides require an "opioid" nitrogen which exists in protonated state while interacting with the receptor. In the present paper we demonstrate that the Tyr-Pro-Gly-Phe-Leu-Thr hexapeptide sequence accepts N-terminal substituents such as N-t-Boc, N-phenylacetyl and N-diphenylacetyl where the N cannot become protonated, as well as "traditional" substitutions such as N,N-diallyl, where protonation is likely under physiological conditions. The opioid peptides bearing these substituents are pure antagonists of medium affinity (Ke values in the mouse vas deferens bioassay against [Met5]-enkephalin are in the 3 x 10(-7)-4 x 10(-6) M range) with a high delta receptor preference (50-350-fold delta over mu selectivity ratios).  相似文献   

16.
We have developed a method that is based on two HPLC systems and permits the separation of endogenous opioid peptides in tissue extracts. The individual peptides are bioassayed on the mouse isolated vas deferens; naloxone (100 nM) ensures opioid specificity. In the myenteric plexus-longitudinal muscle preparation of the guinea-pig small intestine, the tissue content of prodynorphin-derived peptides is lower than those of proenkephalin-derived peptides. No beta-endorphin was detected. Of the prodynorphin fragments, alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), and dynorphin B are present in equimolar concentrations (12-15 pmol/g) whereas the tissue content of dynorphin A is only 0.8 pmol/g. Processing of proenkephalin leads to at least six opioid peptides. The tissue contents of [Leu5]enkephalin, [Met5]enkephalyl-Arg-Gly-Leu, and [Met5]enkephalyl-Arg-Phe are 90-100 pmol/g and the content of [Met5]enkephalin is 405 pmol/g. BAM-18 and [Met5]enkephalyl-Arg-Arg-Val-NH2 are present in much lower concentrations, 24 and 5 pmol/g, respectively. Although present in low amounts, BAM-18 and [Met5]-enkephalyl-Arg-Arg-Val-NH2 have high affinity for the mu-opioid binding site and to a lesser extent for the kappa-site; this binding profile differs from that of the other proenkephalin fragments all of which have high affinities for the mu- and delta-sites.  相似文献   

17.
The peripheral opioid activity of six homologous beta-endorphins (beta-EPs) were assayed on the guinea pig ileum and the vas deferens of the mouse, the rat and the rabbit. In the guinea pig ileum assay, human beta-EP (beta h-EP) was less potent than camel, turkey, and ostrich beta-EPs, of the same potency as equine beta-EP and more active than des-acetyl salmon beta-EP. In the rat vas deferens, mammalian beta-EPs showed higher activity than those from the bird and the fish, whereas in the mouse vas deferens assay, beta h-EP is more active than those from other species. In the rabbit vas deferens, however, all homologous beta-EPs show very weak activity. The relative potency of beta-EP homologues obtained from rat vas deferens assay is in good correlation with the analgesic potency, while the receptor binding activity does not correlate with any of the four bioassays, but appears to be related to the charge properties of the peptides.  相似文献   

18.
Three N-glycoconjugates of the general formula H-Tyr-Gly-Gly-Phe-Leu-NH-R (R = carbohydrate residue) were synthesized in order to determine the influence of some carbohydrate molecules (6-amino-6-deoxy-D-glucopyranose, 2-amino-2-deoxy-D-glucopyranose, beta-D-glucopyranosylamine) on the biological activity, conformation, and stability of the opioid pentapeptide [Leu5]enkephalin. For the preparation of this compound different methods of peptide synthesis (active ester and mixed anhydride) were investigated. In comparison with [Leu5]enkephalin, all three N-glycoconjugates showed higher potency in the guinea pig ileum assay and lower potency in the mouse vas deferens assay, indicating a decrease in delta opioid receptor selectivity.  相似文献   

19.
Opiates and opioid peptides inhibit adenylate cyclase and stimulate specific low Km GTPase activity in membranes from neuroblastoma x glioma NG108-15 hybrid cells. The effects of opiate agonists on both enzymes are mediated by high affinity stereospecific receptors and require Mg2+, GTP, and Na+. In the presence of Mg2+, Na+ inhibits basal GTPase activity; opiates stimulate GTP hydrolysis by antagonizing the Na+-induced inhibition. Activation of GTPase leads, in turn, to inactivation of GTP-stimulated adenylate cyclase activity. The intrinsic activities (or efficacies) of a series of opiates are identical for stimulation of GTPase and inhibition of adenylate cyclase. These results provide a mechanism for the dual requirement for Na+ and GTP in the inhibitory coupling of opiate receptors to the adenylate cyclase system in these cells and may be of general significance to the action of other inhibitory hormones.  相似文献   

20.
The analgesic activity and opioid receptor binding characteristics were studied for the isothiocyanate ohmefentanyl (OMFIT), and isothiocyanate carfentanil (CarFIT), isothiocyanate 4-methoxymethylfentanyl (MethoFIT), isothiocyanate 3-methylfentanyl (superFIT) and their amide analogs. Antinociceptive activity was evaluated using the mouse hot plate test; selectivity for opioid receptor was determined in bioassay and binding assay. SuperFIT, CarFIT, OMFIT and MethoFIT exhibited an analgesic ED50 lower than those of their parent compounds without isothiocyanate (SCN) group. Furthermore these compounds exhibited potent inhibitory actions on the electrically evoked contractions of mouse vas deferens, which could be antagonized by naloxone, but their actions were weaker than those of their parent compounds without SC N-group. The inhibitory actions of these compounds on binding of [3H]OMF to mouse brain membrane was weaker than those of their parent compounds without SCN-group. CarFIT and MethoFIT showed weaker inhibitory actions on the binding of [3H] DADLE than their parent compounds without SCN-group, but SuperFIT and OMFIT stronger than their parent compounds, 3-methylfentanyl and ohmefentanyl. The selectivity of these isothiocyanate derivatives for delta opioid receptors increased. In conclusion, introducing isothiocyanato-group into 1-position of phenyl ring of ohmefentanyl and other fentanyl analogs would enhance the selectivity of these compounds for delta-opioid receptors, but decrease their analgesic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号