首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Burkepile DE  Hay ME 《Oecologia》2007,154(1):167-173
When large, predatory fishes and invertebrates were excluded from areas of a coral reef in the Florida Keys, USA, densities of the normally rare gastropod Cyphoma gibbosum, a principal predator of gorgonian corals, increased 19-fold. Gorgonians in predator exclosures were grazed more frequently and extensively by C. gibbosum than were gorgonians in uncaged areas. In exclosures, 14% of all gorgonians showed recent predation by C. gibbosum, with 62% of the entire colony surface being removed from these attacked individuals. In areas where predators of C. gibbosum were not excluded, only 5% of gorgonians exhibited recent damage, with only 26% of the colony surface being removed from these few damaged individuals. Thus, the increases in both frequency and extent of attack combined to produce an 8× increase in gorgonian damage following removal of large predators. These patterns suggest that predators typically suppress C. gibbosum populations, that overfishing of these predators could release C. gibbosum from top-down control, and that this release will allow increased damage to gorgonian corals.  相似文献   

2.
ObjectiveMultidrug resistance (MDR) is the major barrier to the successful treatment of chemotherapy. Compounds from nature products working as MDR sensitizers provided new treatment strategies for chemo-resistant cancers patients.MethodsWe investigated the reversal effects of nuciferine (NF), an alkaloid from Nelumbo nucifera and Nymphaea caerulea, on the paclitaxel (PTX) resistance ABCB1-overexpressing cancer in vitro and in vivo, and explored the underlying mechanism by evaluating drug sensitivity, cell cycle perturbations, intracellular accumulation, function and protein expression of efflux transporters as well as molecular signaling involved in governing transporters expression and development of MDR in cancer.ResultsNF overcomes the resistance of chemotherapeutic agents included PTX, doxorubicin (DOX), docetaxel, and daunorubicin to HCT-8/T and A549/T cancer cells. Notably, NF suppressed the colony formation of MDR cells in vitro and the tumor growth in A549/T xenograft mice in vivo, which demonstrated a very strong synergetic cytotoxic effect between NF and PTX as combination index (CI) (CI<0.1) indicated. Furthermore, NF increased the intracellular accumulation of P-gp substrates included DOX and Rho123 in the MDR cells and inhibited verapamil-stimulated ATPase activity. Mechanistically, inhibition of PI3K/AKT/ERK pathways by NF suppressed the activation of Nrf2 and HIF-1α, and further reduced the expression of P-gp and BCRP, contributing to the sensitizing effects of NF against MDR in cancer.ConclusionThis novel finding provides a promising treatment strategy for overcoming MDR and improving the efficiency of chemotherapy by using a multiple-targets MDR sensitizer NF.  相似文献   

3.
4.
5.
Multi-drug resistance (MDR) is one of the dominant reasons for the failure of cancer chemotherapy. P-glycoprotein (P-gp) over-expression in the plasma membrane of drug-resistant tumor cells promotes the efflux of chemotherapeutic agents and plays a significant role in MDR. Several investigations have suggested that dihydro-β-agarofuran sesquiterpenes are the potential modulators of MDR. However, their cellular mechanism in regulating P-gp has not been fully explored. Seven dihydro-β-agarofuran sesquiterpenes (17) from Tripterygium hypoglaucum was evaluated for the chemoreversal activity of HepG2/Adr cells. 1, 2, 4, 5, and 7 were active with reversal fold ranging from 47.68 to 456.90. The image-based high-screening indicated that all of the active compounds were capable of decreasing the efflux of doxorubicin (Dox). The most potent 4 did not affect the expression or subcellular distribution of P-gp. P-gp ATPase activity was stimulated by 4 in a dose-depend manner, suggesting that 4 may be the substrate of P-gp. The docking data implied that 4 took PHE 979, PHE 332, and GLN 986 to bind with P-gp. Taken together, the results demonstrated that dihydro-β-agarofuran sesquiterpenes from T. Hypoglaucum were the substrate of P-gp and potential modulators of MDR.  相似文献   

6.
Throughout spermatogenesis, leptotene spermatocytes traverse the blood–testis barrier (BTB) to enter the adluminal compartment of the seminiferous epithelium for continued development. At the same time, the integrity of the BTB, which is constituted by co-existing tight junctions (TJ), basal ectoplasmic specializations (basal ES) and desmosome-like junctions, must be maintained since a breach in barrier function can result in spermatogenic arrest and even infertility. There is evidence to suggest that drug transporters may function at the BTB, but little is known about how they contribute to spermatogenesis. In this study, we investigate the role of P-glycoprotein (P-gp), a drug efflux pump, in BTB dynamics. A survey by RT-PCR revealed several transporter genes to be expressed by the testis, including Mdr1 (gene symbol for P-gp), Mrp1, Abcc5 and Slc15a1. It was also demonstrated that P-gp localizes to the BTB in all stages of the seminiferous epithelial cycle in the adult rat testis, as well as to the Sertoli cell–elongated spermatid interface in stages VII and VIII. We continued our study by examining the levels of several transporters in the testis following oral administration of Adjudin, a compound known to affect Sertoli–germ cell adhesion. In this experiment, the steady-state levels of P-gp, MRP1, ABCG1 and SLC15A1 were all found to increase by several-fold within hours of Adjudin treatment during junction restructuring. More importantly, an increase in P-gp association with TJ proteins (e.g., occludin, claudin-11 and JAM-A) was noted when testis lysates from Adjudin-treated rats were used for co-immunoprecipitation experiments, suggesting that P-gp may enhance BTB function during Sertoli–germ cell junction restructuring.  相似文献   

7.
BackgroundA major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types.PurposeIdentification of novel molecules that overcome MDR by targeting ABC-transporters.MethodsResazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software.ResultsIn our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis.ConclusionOur study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.  相似文献   

8.
Cyphoma gibbosum is an ovulid predatory gastropod that specializes on gorgonians, many of which contain secondary metabolites and calcified sclerites that serve as antipredator defenses. In field and shipboard feeding assays, we examined the role of gorgonian crude extracts and sclerites as feeding deterrents to generalist predators and to C. gibbosum. Crude extracts and sclerites were isolated from Gorgonia ventalina, a Caribbean sea fan on which C. gibbosum feeds, and incorporated into a carrageenan-based artificial diet. In shipboard feeding experiments, artificial diet containing G. ventalina crude extracts was consumed 49% less by C. gibbosum, than artificial diet lacking extracts. The addition of G. ventalina sclerites to the diet also reduced feeding by Cyphoma by about one half. The addition of extracts to the artificial diet reduced feeding by natural assemblages of tropical fishes at Cross Harbor, Great Abaco Island, Bahamas by 87%; sclerites reduced feeding by fishes by 95%. Gorgonia ventalina extracts were composed of at least a dozen nonpolar terpenoids. Fractions containing these compounds were feeding deterrents towards fishes in the field. Unlike many terrestrial oligophagous specialists, C. gibbosum is not immune to the defenses produced by its prey.  相似文献   

9.
The ABC proteins are a family of membrane transporters that mediates the extrusion from cells of a wide variety of structurally unrelated substrates. The current review focuses on the role of these efflux pumps located in the intestine on the low oral bioavailability of trans-resveratrol. The enterocytes hold in the apical membrane three transporters, namely, P-glycoprotein (P-gp), multidrug resistance associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), whereas the basolateral membrane contains multidrug resistance associated protein 3 (MRP3). The use of different specific inhibitors of these transporters as well as knockout mice enabled us to conclude that MRP2 and BCRP are involved in the extrusion of trans-resveratrol glucuronide and sulfate to the intestinal lumen without the participation of P-gp. The role of these transporters as a bottleneck in the absorption of trans-resveratrol cannot be undervalued affecting not only the bioavailability of its glucuronide and sulfate but also their distribution in the different organs.  相似文献   

10.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

11.
Methotrexate (MTX) is the first-line treatment for rheumatoid arthritis (RA). However, after long-term treatment, some patients develop resistance. P-glycoprotein (P-gp), as an indispensable drug transporter, is essential for mediating this MTX resistance. In addition, nobiletin (NOB), a naturally occurring polymethoxylated flavonoid, has also been shown to reverse P-gp–mediated MTX resistance in RA groups; however, the precise role of NOB in this process is still unclear. Here, we administered MTX and NOB alone or in combination to collagen II-induced arthritic (CIA) mice and evaluated disease severity using the arthritis index, synovial histopathological changes, immunohistochemistry, and P-gp expression. In addition, we used conventional RNA-seq to identify targets and possible pathways through which NOB reverses MTX-induced drug resistance. We found that NOB in combination with MTX could enhance its performance in synovial tissue and decrease P-gp expression in CIA mice compared to MTX treatment alone. In vitro, in MTX-resistant fibroblast-like synoviocytes from CIA cells (CIA-FLS/MTX), we show that NOB treatment downregulated the PI3K/AKT/HIF-1α pathway, thereby reducing the synthesis of the P-gp protein. In addition, NOB significantly inhibited glycolysis and metabolic activity of CIA-FLS/MTX cells, which could reduce the production of ATP and block P-gp, ultimately decreasing the efflux of MTX and maintaining its anti-RA effects. In conclusion, this study shows that NOB overcomes MTX resistance in CIA-FLS/MTX cells through the PI3K/AKT/HIF-1α pathway, simultaneously influencing metabolic processes and inhibiting P-gp–induced drug efflux.  相似文献   

12.

Background

Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla.

Principal Findings

Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A2 (PGA2) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA2) were also the most potent inhibitors. In vivo estimates of PGA2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA2 and operating at or near physiological capacity.

Significance

The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumer''s gorgonian diet. This generalist''s GSTs may operate as ‘all-purpose’ detoxification enzymes, capable of conjugating or sequestering a broad range of lipophilic gorgonian compounds, thereby allowing this predator to exploit a range of chemically-defended prey, resulting in a competitive dietary advantage for this species.  相似文献   

13.
ATP-sensitive K(+) (K(ATP)) channels are the target of a number of pharmacological agents, blockers like hypoglycemic sulfonylureas and openers like the hypotensive cromakalim and diazoxide. These agents act on the channel regulatory subunit, the sulfonylurea receptor (SUR), which is an ABC protein with homologies to P-glycoprotein (P-gp). P-gp is a multidrug transporter expressed in tumor cells and in some healthy tissues. Because these two ABC proteins both exhibit multispecific recognition properties, we have tested whether SUR ligands could be substrates of P-gp. Interaction with P-gp was assayed by monitoring ATPase activity of P-gp-enriched vesicles. The blockers glibenclamide, tolbutamide, and meglitinide increased ATPase activity, with a rank order of potencies that correlated with their capacity to block K(ATP) channels. P-gp ATPase activity was also increased by the openers SR47063 (a cromakalim analog), P1075 (a pinacidil analog), and diazoxide. Thus, these molecules bind to P-gp (although with lower affinities than for SUR) and are possibly transported by P-gp. Competition experiments among these molecules as well as with typical P-gp substrates revealed a structural similarity between drug binding domains in the two proteins. To rationalize the observed data, we addressed the molecular features of these proteins and compared structural models, computerized by homology from the recently solved structures of murine P-gp and bacterial ABC transporters MsbA and Sav1866. Considering the various residues experimentally assigned to be involved in drug binding, we uncovered several hot spots, which organized spatially in two main binding domains, selective for SR47063 and for glibenclamide, in matching regions of both P-gp and SUR.  相似文献   

14.
15.
Clostridium perfringens is an anaerobic pathogen known to cause vast number of diseases in mammals and birds. Various toxins and hydrolysing enzymes released by the organism are responsible for the necrosis of soft tissues. Due to serious safety issues associated with current vaccines against C. perfringens, there is a need for new drug or vaccine targets. C. perfringens is extremely dependent on its host for nutrition which can be targeted for vaccine development or drug design. Therefore, it is of interest to identify the unique transport systems used by C. perfringens involved in uptake of essential amino acids that are synthesized by the host, so that therapeutic agents can be designed to target the specific transport systems. Use of bioinformatics tools resulted in the identification of a protein component of the glutamate transport system that is not present in the host. Analysis of the conservation profile of the protein domain indicated it to be a glutamate binding protein which also stimulates the ATPase activity of ATP Binding Cassettes (ABC) transporters. Homology modelling of the protein showed two distinct lobes, which is a characteristic of substrate binding proteins. This suggests that the carboxylates of glutamate might be stabilized by electrostatic interactions with basic residues as is observed with other binding proteins. Hence, the homology model of this potential drug target can be employed for in silico docking studies by suitable inhibitors.  相似文献   

16.
In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype ‘TAS-R8’. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56 kDa (range 52 to 66 kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production.  相似文献   

17.
18.
Erlotinib was originally developed as an epidermal growth factor receptor (EGFR)-specific inhibitor for the treatment of solid malignancies, yet also exerts significant EGFR-independent antileukemic effects in vitro and in vivo. The molecular mechanisms underlying the clinical antileukemic activity of erlotinib as a standalone agent have not yet been precisely elucidated. Conversely, in preclinical settings, erlotinib has been shown to inhibit the constitutive activation of SRC kinases and mTOR, as well as to synergize with the DNA methyltransferase inhibitor azacytidine (a reference therapeutic for a subset of leukemia patients) by promoting its intracellular accumulation. Here, we show that both erlotinib and gefitinib (another EGFR inhibitor) inhibit transmembrane transporters of the ATP-binding cassette (ABC) family, including P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP), also in acute myeloid leukemia (AML) cells that do not overexpress these pumps. Thus, inhibition of drug efflux by erlotinib and gefitinib selectively exacerbated (in a synergistic or additive fashion) the cytotoxic response of KG-1 cells to chemotherapeutic agents that are normally extruded by ABC transporters (e.g., doxorubicin and etoposide). Erlotinib limited drug export via ABC transporters by multiple mechanisms, including the downregulation of surface-exposed pumps and the modulation of their ATPase activity. The effects of erlotinib on drug efflux and its chemosensitization profile persisted in patient-derived CD34+ cells, suggesting that erlotinib might be particularly efficient in antagonizing leukemic (stem cell) subpopulations, irrespective of whether they exhibit or not increased drug efflux via ABC transporters.  相似文献   

19.

Background

Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy.

Methods

Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes.

Results

ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters.

Conclusion

Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.  相似文献   

20.
Microparticles (MPs) play a vital role in cell communication by facilitating the horizontal transfer of cargo between cells. Recently, we described a novel “non-genetic” mechanism for the acquisition of multidrug resistance (MDR) in cancer cells by intercellular transfer of functional P-gp, via MPs. MDR is caused by the overexpression of the efflux transporters P-glycoprotein (P-gp) and Multidrug Resistance-Associated Protein 1 (MRP1). These transporters efflux anticancer drugs from resistant cancer cells and maintain sublethal intracellular drug concentrations. By conducting MP transfer experiments, we show that MPs derived from DX breast cancer cells selectively transfer P-gp to malignant MCF-7 breast cells only, in contrast to VLB100 leukaemic cell-derived MPs that transfer P-gp and MRP1 to both malignant and non-malignant cells. The observed transfer selectivity is not the result of membrane restrictions for intercellular exchange, limitations in MP binding to recipient cells or the differential expression of the cytoskeletal protein, Ezrin. CD44 (isoform 10) was found to be selectively present on the breast cancer-derived MPs and not on leukaemic MPs and may contribute to the observed selective transfer of P-gp to malignant breast cells observed. Using the MCF-7 murine tumour xenograft model we demonstrated the stable transfer of P-gp by MPs in vivo, which was found to localize to the tumour core as early as 24 hours post MP exposure and to remain stable for at least 2 weeks. These findings demonstrate a remarkable capacity by MPs to disseminate a stable resistant trait in the absence of any selective pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号