首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
Over the past decades, comparative physiology and biochemistry approaches have played a significant role in understanding the complexity of metal bioaccumulation in aquatic animals. Such a comparative approach is now further aided by the biokinetic modeling approach which can be used to predict the rates and routes of metal bioaccumulation and assist in the interpretation of accumulated body metal concentrations in aquatic animals. In this review, we illustrate a few examples of using the combined comparative and biokinetic modeling approaches to further our understanding of metal accumulation in aquatic animals. We highlight recent studies on the different accumulation patterns of metals in different species of invertebrates and fish, and between various aquatic systems (freshwater and marine). Comparative metal biokinetics can explain the differences in metal bioaccumulation among bivalves, although it is still difficult to explain the evolutionary basis for the different accumulated metal body concentrations (e.g., why some species have high metal concentrations). Both physiological/biochemical responses and metal geochemistry are responsible for the differences in metal concentrations observed in different populations of aquatic species, or between freshwater and marine species. A comparative approach is especially important for metal biology research, due to the very complicated and potentially variable physiological handling of metals during their accumulation, sequestration, distribution and elimination in different aquatic species or between different aquatic systems.  相似文献   

2.
Alpha interferon treatment of CHO cells elicits the rapid synthesis of many gene products, including metallothionein (MT), a protein which avidly binds heavy metals such as zinc, cadmium, and copper. Since MTs appear to have a pleiotropic role in the cell, ranging from metal detoxification to free-radical scavenging, interferon treatment may trigger a generalized defense mechanism. Activation by interferon, however, was transient, with MT mRNA being maximally detectable by a cytodot procedure within the first hour. Subsequent addition of interferon was ineffective until 7 h after the initial treatment. The action of zinc, a potent inducer of MT, however, remained independent of alpha interferon induction. The transient nature of induction by interferon was examined for altered rate of MT mRNA turnover.  相似文献   

3.
Metallothioneins (MTs) have been detected in livers and kidneys of 10 marine mammals species (Pinnipeds and Odontocetes). Characterization of renal MTs of striped dolphin has shown that the protein has two isoforms (MT-1 and MT-2) with a molecular weight estimated around 6,800. MT concentrations also vary widely in marine mammals tissues (from 58 to 1,200 microg x g(-1) ww) underlying the numerous parameters involved: physiological status, pregnancy, age, diet. The participation of this protein in metal detoxification has been investigated since high levels of cadmium (Cd) and mercury (Hg) have been measured in livers and kidneys of marine mammals. It has been suggested that those animals can mitigate at least in part, the toxic effects of Cd and Hg through binding to MTs. The percentage of the cytosolic Cd bound to MTs can reach almost 100%. On the contrary, the percentage of hepatic and renal Hg bound to MT is very low (generally less than 10%) and this metal is mainly associated with selenium (HgSe) under a detoxified form in the insoluble fraction of the tissues. MTs appear to play a minor role in the binding and detoxification of Hg by marine mammals. On the contrary, close and dynamic interactions occur between Cd and MTs. Cytosolic MTs appear as a potential short term way of detoxification of Cd accumulated from diet. Long-term detoxification would imply a sequestration of the metal under a precipitated form (e.g. in lysosomes).  相似文献   

4.
重金属在海洋食物链中的传递   总被引:36,自引:0,他引:36  
王文雄  潘进芬 《生态学报》2004,24(3):599-604
近年来 ,金属在不同海洋食物链中摄食富集的定量研究得到越来越多的关注。自然环境中生物体内金属的浓度并不一定和生物在食物链中所处的营养级有相关关系 ,金属在生物体内的富集还受到生物的同化、排出等过程以及其它生理生化因子的影响。在经典的海洋浮游生物食物链中 (浮游植物→桡足类→鱼类 ) ,桡足类往往可以很有效地排出体内的金属 ,同时鱼类的金属同化率又很低 ,所以该食物链中金属的浓度随食物链水平增加而减少。目前研究发现只有甲基汞和铯 Cs会被食物链所放大。在以腹足动物为顶级捕食者的底栖食物链中 ,因为生物结合金属的效率很高 ,高同化率和低排出率导致金属浓度在生物体内得到放大。重金属在生物体内的可利用性可以通过测定同化率、排出率等参数、并结合考虑生物对该金属的消化行为 ,运用一个简易的动态模型来估算。已有的研究中人们多考虑金属的化学性质对食物链传递的影响。着重介绍了近年来国外对金属在不同海洋食物链 (底栖和浮游 )中的传递的研究成果 ,强调在金属的生物可利用性评估中 ,要充分考虑到动物的生理、生化过程的影响 ,同时也必须认识到不同的海洋生物有着复杂且不同的金属代谢机制  相似文献   

5.
Rates of uptake from solution and assimilation efficiencies of the trace metals Ag, Cd and Zn were investigated in the barnacle Balanus amphitrite after exposure in the laboratory for 19 days to low and high doses of added Ag and Cd in a diatom (Thalassiosira weissflogii) diet, the major route of metal uptake in barnacles. The hypothesis under test was that acute metal pre-exposure would affect the assimilation efficiency (AE) of that and other metals and their rate of uptake from solution. It was found that pre-exposure of the barnacles to atypically high dietary challenges of Cd and Ag did not cause changes in the rates of uptake of Cd, Ag or Zn from solution. Similarly, there was no clear consistent effect of dietary pre-exposure to Cd or Ag on the assimilation efficiency of Cd, Ag or Zn. The efflux rates of the metals were also comparable following the acute dietary exposure. Subcellular fractionation data indicated that the majority of the three metals were partitioned in the insoluble fraction, with very little in the soluble fraction consisting of metallothionein-like proteins and other (heat-sensitive) proteins. The lack of induction of increased Cd or Ag AE after pre-exposure in barnacles contrasts with results for mussels; this inconsistency is interpreted to result from differences in physiological accumulation patterns, the barnacles relying to an extreme extent on insoluble detoxification.  相似文献   

6.
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in a wide variety of organisms including bacteria, fungi and all eukaryotic plant and animal species. MTs bind essential and non-essential heavy metals. In mammalian cells MT genes are highly inducible by many heavy metals including Zn, Cd, Hg, and Cu. Aquatic systems are contaminated by different pollutants, including metals, as a result of man's activities. Bivalve molluscs are known to accumulate high concentrations of heavy metals in their tissue and are widely used as bioindicators for pollution in marine and freshwater environments, with MTs frequently used as a valuable marker of metal contamination. We here describe the MT isoform gene expression patterns of marine and freshwater molluscs and fish species after Cd or Zn contamination. Contamination was carried out at a river site polluted by a zinc ore extraction plant or in the laboratory at low, environmentally relevant metal concentrations. A comparison for each species based on the accumulated MT protein levels often shows discrepancies between gene expression and protein level. In addition, several differences observed in the pattern of MT gene expression between mollusc and mammalian species enable us to discuss and challenge a model for the induction of MT gene expression.  相似文献   

7.
Human peripheral blood lymphocytes have the capacity to produce metallothioneins (MTs) as a protective response to cadmium exposure. To define the range of metal species inducing lymphocyte MTs, cellular proteins synthesized after exposure to each of 11 heavy metals were analyzed by gel electrophoresis. Toxic metals such as cadmium, mercury and silver were found to induce thioneins (apoproteins of MTs) at relatively low concentrations (maximum at approximately 10 microM), whereas less toxic metals such as zinc, copper and nickel were inductive at relatively high concentrations (maximum at approximately 200 microM). Tin, lead, iron, cobalt, and manganese did not induce thioneins. The heavy metal specificity of MT induction in the lymphocyte resembles that in the liver, and the regulatory mechanism of MT production seems to be similar in both of these tissues. In the cells exposed to highly toxic metals such as cadmium and mercury, expression of cytotoxicity (represented by decline of cysteine uptake) was remarkable at the metal concentrations higher than those saturating thionein induction, supporting the protective role of MTs against heavy metals.  相似文献   

8.
Metallothioneins (MTs) are crucial proteins in all organisms for the regulation of essential metals and the detoxification of heavy metals. Many studies have estimated MT levels in mussel tissues to detect marine metal pollution. In this study, we investigated the MT gene structures of the forms present in Mytilus edulis (blue mussel). One MT-10 (2413 bp) gene and one MT-20 (1906 bp) gene were obtained. These MT genes contain three exons and two long introns. The splicing signals for MT-10 and MT-20 were GTA(T/A)GT-(C/T)AG. The structural organization (length of intron, splicing signals, AT content) of MT-10 and MT-20 is compared with other MT genes.  相似文献   

9.
无脊椎动物金属硫蛋白(MTs)多样性及其生态服务功能   总被引:14,自引:0,他引:14  
金属硫蛋白(MTs)是一类低分子量、半胱氨酸含量异常丰富的金属结合多肽,自从20世纪70年代中期发现海洋无脊椎动物MTs以来,MTs已被证明广泛存在于无脊椎动物的各个类群之中。无脊椎动物物种间的金属硫蛋白存在着显著差异,研究无脊椎动物MTs多样性并揭示其生态服务功能,在理论与实践上都至关重要。本文分析了无脊椎动物MTs的多样性:结合金属元素多样性、同形体及其变体的蛋白质遗传多样性和生态服务功能多样性,并讨论了 MTs的三个生态服务功能:MTs对重金属解毒和调节作用、MTs作为环境监测的生物标志物、MTs的环境重金属污染净化功能及其在环境污染治理中的作用。  相似文献   

10.
通过皮下注射的方法诱导豚鼠产生金属硫蛋白(MT),研究了重金属元素(Cd)、微量元素(Cu,Zn)及有机试剂(CCl4,在体内可产生自由基)等因素的诱导与豚鼠肝脏中MT不同亚型的含量及金属结合状态的变化关系.实验结果表明,微量元素及有机试剂的诱导可使豚鼠肝脏中MT1的产量明显高于MT2,说明在体内MT1在参与微量元素的储存及清除自由基功能方面比MT2强.在重金属元素诱导下体内MT1对重金属元素的结合量远远大于MT2.表明MT1的重金属解毒能力比MT2强.上述实验结果与对不同亚型MT生物学功能差异的体外研究结果相吻合.此外,无论采用上述何种因素诱导,所得MT中均结合有Cu.对Cu在MT形成过程中的作用也进行了初步探讨.  相似文献   

11.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

12.
Metallothioneins (MTs) are low molecular weight, cysteine-rich proteins that bind heavy metals. MT induction occurs in liver in response to either heavy metal (Zn++ or Cd++) administration or stress. The synthesis of MT can also be induced by either heavy metals or glucocorticoid hormones in HeLa cells cultured in serum-free medium. Induction of MT by zinc is subject to "desensitization." In contrast, dexamethasone (dex) induction results in a continued elevation in the rate of MT synthesis. The stability of MT is dependent on the availability of metal; consequently, MT induced by dex is degraded much more rapidly (half-life of 11 to 12 hours) than MT induced by elevated zinc levels (half-life of 36 to 38 hours). Removal of either inducer results in biphasic degradation curves, as apothionein and zinc come into balance. In contrast, deinduction kinetics for MT synthesis following removal of the two inducers (zinc and dex) are the same, with a half-life of two and one-half hours. Inhibition of RNA synthesis blocks deinduction after removal of inducer. Induction of MT occurs in a wide variety of species, from blue-green algae to man. This system should provide an excellent model for the comparative biochemistry of regulation of gene expression.  相似文献   

13.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypep-tides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

14.
15.
In this study, autometallography and immunohistochemistry were used to localize and quantify cadmium and metallothionein (MT) levels, respectively, in cellular compartments of turbot liver on exposure to cadmium for 7 days and further depuration treatment for 14 days. Metals weakly bound to proteins (i.e. MTs) in hepatocyte lysosomes were visualized as black silver deposits (BSDs) using a light microscope. With the aid of a newly developed immunohistochemical procedure, MTs were localized and semi-quantified in both the cytosolic and the lysosomal compartments of hepatocytes. The BSD extent in the lysosomes of hepatocytes increased significantly as a result of cadmium exposure. This response was evidenced after 1h. Further, a progressive increase in the volume density of BSDs occurred up to the seventh day. Total MT immunohistochemical levels increased at a lower rate, starting after 1 day of cadmium exposure. BSD extent values recovered after depuration, whilst MT levels remain unchanged. It is possible that the detoxification rate of metals via lysosomes was diminished, whilst MT levels remained unchanged, at least after 14 days of depuration. It can be concluded that autometallography and MT immunohistochemistry are good tools for clarifying metal and metal-MT trafficking routes in hepatocytes, and also that BSD extent and MT immunohistochemical levels in the lysosomes and cytosol of fish hepatocytes can be considered to be useful biomarkers of metal exposure.  相似文献   

16.
In this study, autometallography and immunohistochemistry were used to localize and quantify cadmium and metallothionein (MT) levels, respectively, in cellular compartments of turbot liver on exposure to cadmium for 7 days and further depuration treatment for 14 days. Metals weakly bound to proteins (i.e. MTs) in hepatocyte lysosomes were visualized as black silver deposits (BSDs) using a light microscope. With the aid of a newly developed immunohistochemical procedure, MTs were localized and semi-quantified in both the cytosolic and the lysosomal compartments of hepatocytes. The BSD extent in the lysosomes of hepatocytes increased significantly as a result of cadmium exposure. This response was evidenced after 1h. Further, a progressive increase in the volume density of BSDs occurred up to the seventh day. Total MT immunohistochemical levels increased at a lower rate, starting after 1 day of cadmium exposure. BSD extent values recovered after depuration, whilst MT levels remain unchanged. It is possible that the detoxification rate of metals via lysosomes was diminished, whilst MT levels remained unchanged, at least after 14 days of depuration. It can be concluded that autometallography and MT immunohistochemistry are good tools for clarifying metal and metal-MT trafficking routes in hepatocytes, and also that BSD extent and MT immunohistochemical levels in the lysosomes and cytosol of fish hepatocytes can be considered to be useful biomarkers of metal exposure.  相似文献   

17.
Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a beta domain that binds three bivalent metal ions and an alpha domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S-transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7-MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7-MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms.  相似文献   

18.
Metallothioneins (MTs) have been widely considered for their potential use as specific biomarkers to reflect the existence of heavy metal pollution, because their induction has been observed to be obviously elevated after heavy metal exposure in a large number organism studied. However, relatively fewer efforts have been made in MT-related studies of prawn species, such as the white shrimp Litopenaeus vannamei, a globally important aquaculture species. With the results from gel filtration chromatography, we demonstrate the existence of MTs or MT-like proteins in L.vannamei. We further studied the relationship between MT induction and metals accumulation after long-term exposure to the heavy metals Cd and Zn. From our results, it is very clear that the response of L. vannamei to Cd differs from that to Zn, and this should be considered when using MTs in field applications to monitor metals contamination.  相似文献   

19.
The structures of mammalian metallothioneins (MTs), as solved by X-ray crystallography and NMR spectroscopy, all show seven divalent metals bound in two separate domains. The marked differences in metal-mobilities found for the two domains has led to the proposal for a dual role for the two MT metal domains. The tight metal binding in the C-terminal alpha-domain supposedly constitutes the basis for the detoxification of excess heavy metals, while the more labile metals in the N-terminal beta-domain function in the homeostasis of the essential elements zinc and copper. In this overview, we compare the two types of dimers found for MTs and their influence on metal-mobilities. In the presence of excess metal, the N-terminal domain is responsible for the formation of metal-bridged dimers while under aerobic conditions, a specific intermolecular disulfide is formed between the C-terminal domains. Both forms of dimers not only involve different domains for their intermolecular protein interactions, they also exhibit radical differences in the reactive properties of their respective cluster bound metal ions. Since the metal exchange within each domain is also influenced by interdomain interactions, the relative orientation of the domains is also most likely important for MT functions. Thus far, the relative orientation of the two domains could only be obtained from the crystal structure. Here, we present evidence for increased mobility in the linker region as the reason for the lack of interdomain constraints in the solution NMR studies of mammalian MTs.  相似文献   

20.
The present study analyzed metallothionein (MT) excretion from liver to bile in Nile Tilapia (Oreochromis niloticus) exposed to sub-lethal copper concentrations (2 mg L−1) in a laboratory setting. MTs in liver and bile were quantified by spectrophotometry after thermal incubation and MT metal-binding profiles were characterized by size exclusion high performance liquid chromatography coupled to ICP-MS (SEC-HPLC–ICP-MS). Results show that liver MT is present in approximately 250-fold higher concentrations than bile MT in non-exposed fish. Differences between the MT profiles from the control and exposed group were observed for both matrices, indicating differential metal-binding behavior when comparing liver and bile MT. This is novel data regarding intra-organ MT comparisons, since differences between organs are usually present only with regard to quantification, not metal-binding behavior. Bile MT showed statistically significant differences between the control and exposed group, while the same did not occur with liver MT. This indicates that MTs synthesized in the liver accumulate more slowly than MTs excreted from liver to bile, since the same fish presented significantly higher MT levels in liver when compared to bile. We postulate that bile, although excreted in the intestine and partially reabsorbed by the same returning to the liver, may also release MT-bound metals more rapidly and efficiently, which may indicate an efficient detoxification route. Thus, we propose that the analysis of bile MTs to observe recent metal exposure may be more adequate than the analysis of liver MTs, since organism responses to metals are more quickly observed in bile, although further studies are necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号