首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The neurotoxic potential of a primary-treated and ozonated municipal effluent was examined using feral freshwater Elliptio complanata mussels. Specimens were exposed to increasing concentrations (0, 1, 3, 10 and 20% v/v) of a primary-treated effluent before and after treatment with 10 mg/L of ozone in a mesocosm-type experiment for 30 days. A suite of biomarkers was used to assess the potential neurotoxic stress of the wastewaters on these benthic invertebrates: opiate binding sites, gamma-aminobutyric acid (GABA) metabolism, monoamines levels (serotonin, dopamine), monoamine oxidase, acetylcholinesterase and lipid peroxidation. Gametogenic activity was also determined by the gonado-somatic index and by vitellogenin-like proteins. The results show that the number of opiate binding sites increased slightly, especially after ozonation. GABA metabolism was generally reduced, suggesting higher glutamate stimulation than GABA dampening effects in mussel ganglia. This excitatory state was further confirmed by decreased acetylcholinesterase activity in gonadal tissues. The turnover of dopamine was enhanced with increased serotonin levels, but accompanied by reduced catabolism, as evidenced by decreased monoamine oxidase activity. Moreover, oxidative stress was increased, as determined by lipid peroxidation in the gonad (containing ganglia), which was significantly correlated with acetylcholinesterase activity and dopamine metabolism. The gonado-somatic index was significantly reduced with increased levels of vitellogenin-like proteins, again confirming the estrogenic action of these wastewaters. The data suggest that exposure to a primary-treated municipal effluent before and after ozonation leads to an excitotoxic syndrome implicating perturbations in GABA, dopamine and acetylcholine signaling. The increase in dopamine metabolism may be associated with the occurrence of opiate-like compounds (i.e. morphine) in the effluent. In general, ozonation reduced the severity of the responses, indicating that this disinfection strategy does not increase neurotoxicity to mussels.  相似文献   

2.
The endocrine-disrupting activity of municipal effluents has the potential to alter the reproductive system and induce feminization to aquatic organisms. The purpose of this study was to examine the sex ratio, vitellogenin (Vtg)-like proteins, serotonin, arachidonate cyclooxygenase (COX) activity and dopamine status in wild mussels living at sites upstream and downstream of two municipal effluent outfalls in the Mille-Îles River (Quebec, Canada). Gonad integrity was also studied by monitoring the gonado-somatic index (GSI), the activity of the rate-limiting enzyme aspartate transcarbamoylase (ATC) for purine synthesis, and changes in lipid peroxidation (LPO). The results showed that the proportion of females was dramatically increased from 30% at the upstream sites to 80% at the downstream sites. The levels of Vtg-like proteins were significantly elevated in the male mussels only. Male mussels downstream of the municipal effluent plumes expressed female-specific protein bands (Vtg-like), as determined by high-resolution gel electrophoresis and silver staining. The serotonin/dopamine ratio was significantly decreased in the downstream mussels, indicating that the gonad was in a state of early vitellogenesis. However, this change was not accompanied by changes in ATC, suggesting no significant egg production was underway; this was confirmed by the observation that the downstream mussels displayed significantly low GSIs. GSIs were rather dependent on the serotonin/dopamine ratio (r = 0.44; p < 0.001), while Vtg-like proteins were dependent on dopamine levels (r = 0.50; p < 0.001). The increase in COX activity at the downstream sites and its close relationship with increased serotonin levels suggest a concomitant serotonergic signalling in addition to VTG production. The production of Vtg-like proteins combined with the serotonergic effects of the municipal effluents was associated with oxidative damage (LPO) in the gonad. This study provides the first evidence of feminization in wild mussel populations and the disruption in gonad physiology by exposure to municipal effluents.  相似文献   

3.
The purpose of this study was to identify the pharmacological effects of anti-inflammatory drugs in freshwater mussels (Elliptio complanata) exposed to a primary-treated municipal effluent. Mussel specimens were injected with either increasing concentrations of ibuprofen or with a municipal effluent extract, and then left to stand for 24 h at 15 degrees C. They were also exposed to dilutions of a primary-treated effluent for 30 days at 15 degrees C under semi-static conditions. Gill and gonad cylcooxygenase (COX) were then determined after the incubation period. The influence of various drugs found in municipal effluents on serotonin and dopamine synaptosome transport was determined in visceral ganglia. The results show that injections of ibuprofen reduced COX activity nearly 4-fold in gills and 1.4-fold in gonads. However, COX activity was induced in both tissues after 24 h in mussels injected with a municipal effluent extract and after 30 days in those exposed to dilutions of the effluent. Moreover, synaptosomal dopamine transport activity was increased by ibuprofen, aspirin, caffeine and estradiol-17beta (E2), and decreased by loperamide and carbamazepine, suggesting increased and decreased turnover rates of this catecholamine, respectively. Serotonin transport activity was much less affected, decreasing with high doses of loperamide and increasing with ibuprofen, but with less intensity than with dopamine. The results suggest that although ibuprofen can effectively reduce COX activity in gill and gonadal tissues, exposure to both the municipal effluent and its organic extract increased COX activities, indicating the absence of NSAID (non-steroidal anti-inflammatory drugs)-related effects. Besides their known estrogenic and serotonergic properties, municipal effluents appear to elicit a state similar to inflammation in freshwater mussels.  相似文献   

4.
Sex differentiation and gametogenesis represent critical steps in the reproductive process and are subject to hormonal control by serotonin, dopamine and steroids such as estradiol-17beta and testosterone. The purpose of this study sought to examine the endocrine-disrupting activity that a primary-treated municipal effluent might have on the metabolism of biogenic amine levels. First, serotonin receptors transfected in Chinese hamster ovary (CHO) cells were used to screen for the presence of serotonin receptor agonist or antagonist. Second, one group of Elliptio complanata mussels were exposed to single compounds likely to be found in municipal wastewaters and another group was exposed in situ to the municipal effluent plume for 90 days in experimental cages. Results showed that solid phase C-8 extracts of surface water downstream a municipal effluent could activate the transport of serotonin by receptors at a distance of at least 5 km from its outfall thereby indicating the presence of serotonin mimics in the effluent dispersion plume. Levels of serotonin and monoamine oxidase (MAO) activity in nerve ganglia of mussels exposed for 90 days to the municipal effluent were, respectively, reduced and increased at a distance 10-km downstream. Injections of estradiol-17beta and nonylphenol in mussels decreased the levels of serotonin and dopamine, but increased MAO activity in the gonad and nerve ganglia. Exposure to estrogenic chemicals present in municipal effluents may therefore alter the normal metabolism of serotonin and dopamine, both of which are involved in sexual differentiation in bivalves and fish. Chemicals acting through E2 receptor-mediated pathways and serotonin receptors are likely to cause the observed effects.  相似文献   

5.
Freshwater mussels, Elliptio complanata, were caged in special benthic pens and were immersed at one upstream (Ups) site and two downstream sites (8 and 11 km) of a primary-treated municipal effluent plume for 1 year. The levels of metallothionein-like proteins (MT), lipid peroxidation, protein-free DNA strands and glutathione S-transferase (GST) activity were assayed in digestive gland, gill and gonad tissues to evaluate biological effects and damage. The levels of monoamines (serotonin and dopamine) in nerve ganglia, ATP-dependent transport activity and monoamine oxidase (MAO) activity were also investigated in the homogenates, synaptosomes and mitochondria, respectively. Results showed that significant amounts of sediment accumulated in cages and 82% of mussels survived the yearlong exposure period at the downstream sites. MT-like proteins were induced in all tissues with the following response intensity: gill (3-fold), digestive gland (1.4-fold) and gonad tissues (1.3-fold). Lipid peroxidation decreased (2.5-fold) in digestive gland but increased in gill (1.6-fold) and in gonad tissues (1.5-fold). GST activity was readily increased in digestive gland (2.5-fold), suggesting the presence of organic contaminants in the plume. Levels of protein-free DNA strands did not vary significantly in digestive gland and gill tissues but were significantly reduced in gonad tissues (2.5-fold) relative to the upstream site. In visceral nerve ganglia, both serotonin and ATP-dependent serotonin transport decreased 1.7-fold with a 4-fold increase of 5-hydroxyindole acetate (5-HIAA, a serotonin metabolite) level relative to the upstream site. However, MAO activity was somewhat reduced at downstream sites (0.7- to 0.9-fold of the activity at the upstream site). Dopamine levels were found to be decreased (1.5-fold), but dopamine ATP-dependent transport activity was increased 1.8-fold, suggesting reduced dopaminergic activity. These results indicate that estrogenic chemicals are likely at play, and the increased dopamine and decreased serotonin ATP-dependent transport suggest that the municipal plume was serotonergic for mussels located at the downstream sites. Mussels exposed for 1 year display a complex but characteristic pattern of responses that could lead to harmful health effects including neuroendocrine disruption of reproduction.  相似文献   

6.
Municipal effluents are an important source of estrogens to the aquatic environment. The purpose of this study was to examine the estrogenicity of municipal effluents to the indigenous freshwater mussel, Elliptio complanata. First, estradiol-binding sites in gonad homogenates were characterized to determine the binding affinity and specificity of estrogens. Mussels were exposed to increasing concentrations of a municipal effluent for 96 h at 15 degrees C. In another experiment, mussels were placed in cages and submerged for 62 days at 1.5 km upstream and 5 km downstream of a municipal effluent plume in the St. Lawrence River. Mussels were harvested for assessment of vitellogenin-like proteins in the hemolymph and determination of total lipid, carbohydrate and protein in the gonad. The presence of specific estrogen-binding sites was found in both male and female gonads. Binding of estradiol to cytosol proteins reached saturation, yielding a dissociation constant of 0.4 nM. Vitellogenin (Vg) levels increased significantly in both the hemolymph and the gonad after exposure to the effluent. Moreover, females appeared to be more sensitive than males to producing Vg. Mussels exposed in situ to contaminated surface waters had higher levels of Vg at the downstream site, again, females had higher levels of Vg than did males. On the other hand, lipid and sugar levels in male gonads were significantly increased at the downstream site. Moreover, mussels at the downstream site had decreased shell growth length and increased total and soft tissue weights. We conclude that municipal effluents contain bio-available xenoestrogens at levels sufficient to elicit effects in freshwater mussels.  相似文献   

7.
Freshwater mussels were analyzed for biogenic amine transmitter substances in gill tissue, suprabranchial nerve and blood. Gill tissue from normal pondwater-acclimated mussels contained significant amounts of monoamine neurotransmitter substances. In comparison with the suprabranchial nerve the gill tissue contained 42% of the dopamine, 7% of the serotonin and 490% of norepinephrine. Exposing the animals to deionized water (salt-depleted) resulted in a loss of transmitter substances from gill tissue, but serotonin reduction was modest. The mussel gill tissue content of serotonin and the precursor tryptophan was regulated at nearly constant levels. Serotonin is an important transmitter substance in mussels and the many functions it controls, including sodium transport regulation, would depend on its continued presence.  相似文献   

8.
Rats were subjected to a severe bout of thiamine deficiency induced by daily pyrithiamine +a thiamine deficient diet, reversed by thiamine administration and allowed to recover. Pyrithiamine treated animals demonstrated impaired retention of a 24 h recall of passive avoidance. Regional brain concentration of norepinephrine, dopamine, serotonin, 3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, GABA, glutamate, aspartate, glutamine, and glycine were determined after 2 and 9 weeks of nutritional recovery. A significant increase in NE content of cerebellum from the pyrithiamine treated animals was observed at both 2 and 9 week recovery periods. The concentrations of serotonin and its metabolite were signifciantly elevated in midbrain-thalamus and striatum. Significant reductions of GABA and glutamate were also observed in midbrain-thalamus. Amino acid levels in all other brain areas were unchanged from pair-fed controls. These results suggest regionally specific, chronic alterations in GABA, glutamate, serotonin, and norepinephrine activity following recovery from an acute bout of pyrithiamine-induced thiamine deficiency. The absence of a permanent reduction of cortical norepinephrine similar to that observed in an earlier study is discussed.  相似文献   

9.
Abstract: Intrastriatal microdialysis was used to administer muscarinic drugs in freely moving rats for 40 min at a flow rate of 2 µl/min. Administration of the nonselective agonist pilocarpine at 10 m M increased striatal dopamine release and decreased extracellular GABA and glutamate overflow. Perfusion with the muscarinic M2 antagonist methoctramine at 75 µ M increased extracellular dopamine and glutamate concentrations but exerted no changes on extracellular GABA levels. Intrastriatal administration of the M1 antagonist pirenzepine at 0.05 µ M decreased extracellular dopamine overflow. Application of pirenzepine (0.05 and 5 µ M ) exerted no effects on the measured GABA or glutamate levels. There are thus important differences in applied doses of muscarinic drugs needed to obtain modulatory effects. High doses of agonists are probably needed to superimpose on the background of tonic influences of striatal acetylcholine, whereas antagonists can block the receptors in small doses. We further suggest that M1 receptors might tonically facilitate striatal dopamine release, that M2 receptors might tonically inhibit striatal glutamate efflux, and that acetylcholine does not exert tonic effects on striatal GABA release. The link with the pilocarpine animal model for temporal lobe epilepsy will be discussed.  相似文献   

10.
This study sought to examine the genotoxic potential in Elliptio complanata freshwater mussels exposed to a physically and chemically treated municipal effluent before and after ozone treatment. Mussels were continuously exposed to increasing concentrations of the effluents for 14 days. Genotoxicity was determined by tracking changes in key enzymes for purine and pyrimidine synthesis (dehydrofolate reductase and aspartate transcarbamoylase), catabolism of purines (xanthine oxido-reductase) and DNA strand-break levels as determined by the alkaline precipitation assay. Other biomarkers related to xenobiotic biotransformation (cytochrome P4503A and glutathione S-transferase activities), metal metabolism (labile zinc and redox state of metathioneins) and oxidative stress (superoxide dismutase activity) were also determined in the mussels. The data revealed that dehydrofolate reductase activity was reduced by the initial effluent and increased by the ozonated effluent. Aspartate transcarbamoylase activity was significantly induced only with the ozonated effluent. The levels of DNA strand breaks responded in a biphasic manner in mussels exposed to the physically and chemically treated effluent where an initial decrease was observed at a low effluent concentration (3% v/v) followed by an increase in DNA strand breaks at a higher effluent concentration (20%). This response pattern was lost in the ozonated effluent, where only a decrease in DNA breaks was found. Xanthine oxidoreductase activity was not significantly affected but did correlate significantly with dehydrofolate reductase activity. Multivariate factorial and canonical analyses revealed that oxidative stress and metal/xenobiotic metabolism markers were strongly correlated with DNA strand breaks in mussels, suggesting that the presence of metals (zinc) and planar hydroxylated hydrocarbons present in these effluents were strong contributors to the observed response. We conclude that municipal effluents contain a complex mixture of pollutants that could modulate DNA synthesis and repair mechanisms in mussels.  相似文献   

11.
Abstract: Intrastriatal injection of the glutamate agonist kainic acid (KA) in rats has been used to produce an animal model to investigate the mechanism of acetylcholine and GABA cell death associated with Huntington's disease. In the present study, the time course of low (10−5 M ) and high (5 × 10−3 M ) concentrations of KA on striatal dopamine and serotonin release was studied in freely moving rats by using in vivo voltammetry. The response to low concentrations of KA varied between animals, either increasing dopamine release during the injection or increasing dopamine and serotonin after the injection for an extended time, suggesting that 10−5 KA is near the threshold for KA toxicity in the striatum in rats. High concentrations of KA suppressed dopamine release during injection, with both dopamine and serotonin release increasing and remaining elevated for 1–4 and 7–21 days, respectively. KA-induced changes were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione and bicuculline increased the release of dopamine but not serotonin. These findings suggest that KA-induced changes in dopamine release resulted from a disinhibition of dopamine neurons due to KA-mediated toxicity of striatal GABA neurons. An alternate possibility is that the change in dopamine and serotonin release may have arisen from a functional modification or degeneration of presynaptic terminals.  相似文献   

12.
P-chlorophenylalanine, an inhibitor of serotonin synthesis, was found to completely prevent the inhibitory effect of morphine and methadone on the stereotypy caused by d-amphetamine and methyl-phenidate in rats. d-Fenfluramine and m-chlorophenylpiperazine, two drugs supposed to increase serotonin transmission, and halo-peridol, an antagonist of dopamine at central receptors, blocked the stereotyped movements induced by repeated treatment with morphine and methadone. The results suggest that a) brain serotonin mediates the effect of morphine and methadone on amphetamine and methylphenidate stereotypy b) serotonin and dopamine are involved in the stereotyped movements caused by long-term treatment with these narcotics in the rat.  相似文献   

13.
Freshwater mussels (Family Unionidae) are among the most imperiled group of organisms in the world, with nearly 65% of North American species considered endangered. Anthropogenic disturbances, including altered flow regimes, habitat alteration, and pollution, are the major driver of this group''s decline. We investigated the effects of tertiary treated municipal wastewater effluent on survivorship, growth, and condition of freshwater mussels in experimental cages in a small Central Texas stream. We tested the effluent effects by measuring basic physical parameters of native three ridge mussels (Amblema plicata) and of non-native Asian clams (Corbicula fluminea), before and after 72-day exposure at four sites above and below a municipal wastewater treatment plant outfall. Survivorship and growth of the non-native Asian clams and growth and condition indices of the native three ridge mussels were significantly higher at the reference site above the outfall than in downstream sites. We attribute this reduction in fitness below the outfall to elevated nutrient and heavy metal concentrations, and the potential presence of other untested-for compounds commonly found in municipal effluent. These results, along with an absence of native mussels below the discharge, indicate a significant negative impact of wastewater effluent on both native and non-native mussels in the stream.  相似文献   

14.
Neurotoxic effects of methoxychlor (MTX) are poorly understood at present. This study was undertaken to evaluate the possible effects of MTX in norepinephrine, dopamine and amino acid contents and serotonin turnover in rat striatum. For this purpose, adult male Sprague-Dawley rats were administered 25 mg/kg/day of MTX in sesame oil or vehicle only for 30 days. The neurotransmitters of interest were measured in the striatum by HPLC. MTX decreased norepinephrine and 5-hydroxyindole acetic acid (5-HIAA) content and serotonin turnover (measured as 5-HIAA/serotonin ratio), and increased glutamate and GABA concentrations. However, the content of serotonin, aspartate, glutamine and taurine was not modified by MTX exposure. These data suggest that MTX exposure inhibits norepinephrine synthesis and serotonin metabolism. The inhibitory effect on norepinephrine could be explained, at least in part, by the increase of both GABA and glutamate contents. Further studies are needed to understand the effects of MTX on serotonin. Also a disruptive effect of MTX on the metabolisms of glutamate, aspartate, glutamine and GABA emerges.  相似文献   

15.
The content of neurotransmitters and their metabolites was investigated in brain cortex hemispheres, thalamus and brainstem of rats subjected to chronic morphine intoxication (7–21 days). Morphine administration for 7–14 days was accompanied by changes of the catecholamine system functioning, which was the most pronounced in the thalamus and the brainstem. These changes included increased secretion of dopamine and noradrenaline, their decrease in the brain tissue, and an increased content of their metabolites. The changes in serotonin and GABA content were less pronounced and included a decrease of serotonin level and the increase of the GABA content in different periods of opiate administration.  相似文献   

16.
We developed biomarkers to monitor the endocrine-disrupting potential of contaminants and municipal effluents in aquatic arthropods. Artemia fransciscana shrimp were cultured and exposed to increasing concentrations of 20-hydroxyecdysone (20HE) and solid phase (C-8) municipal effluent extract (MEE) for 48 h at 20 degrees C. The levels of vitellogenin (Vtg)-like proteins, alkali-labile phosphates in total proteins and acetylcholinesterase (AChE) activity were determined in soft tissues. The levels of acid-soluble, alkali-soluble (sclerotin), neutral-soluble (arthropodin) proteins and chitin were determined to characterize the maturation state of shells. Both 20HE and the municipal effluent extract readily increased the total activity of acetylcholinesterase, alkali-labile phosphates in proteins and vitellogenin-like proteins in brine shrimp. In shells, 20HE and the effluent extract increased the proportion of chitin in shells and acid-soluble proteins but were not statistically significant for the latter. The proportion of sclerotin was increased by 20HE but was not changed by the effluent extract. The proportion of arthropodin was decreased by both 20HE and the effluent extract. Correlation analysis revealed that, as expected, the proportion of acid-soluble protein for biomineralisation and chitin levels were positively correlated and the proportion of arthropodin and sclerotin were negatively correlated in shells exposed to 20HE. Principal component analysis revealed that the proportion of chitin, arthropodin, sclerotin and acid-soluble proteins explained 63% of the responses. Shell protein and carbohydrate contents, controlled by the molting hormone 20HE, could be used as efficient markers for ecdysial properties of various contaminants. The municipal effluent appears to contain ecdysial-like chemicals that are capable of producing changes in shell protein composition that are similar to 20HE.  相似文献   

17.
Predation by sea stars has the potential to cause elevated levels of mortality in reestablished populations of bivalves relative to levels of recruitment. Recent efforts to restore beds of the nearly extirpated green‐lipped mussel within the Hauraki Gulf, New Zealand, resulted in high abundances of sea stars occupying those beds and it is unknown whether predation poses a potential limitation to the success of restoration in this bivalve species. The contribution of predation by sea stars to the mortality of mussels across four experimental mussel beds over a 2‐year period was estimated using data from regular assessments of sea star abundance and an experimentally determined consumption rate of sea stars upon mussels. In addition, the potential size selection of mussels by sea stars was assessed to determine if large sea stars selected for recent settlers. Sea stars' abundance within the mussel beds grew to an average of 0.57 sea stars/m2 within 9 months, remaining at similar levels throughout the study. These predominantly large sea stars were estimated to have consumed 30.1% of the mussels over a 25‐month period, representing a contribution of 40.4% of the mussel mortality. Sea stars predominantly selected for larger mussels, and their predation likely contributes little to any lack in mussel recruitment. Sea star predation is clearly a limiting factor on the survival of transplanted adult mussels and the present study highlights the need to continually assess predation risk to determine if remediation is necessary for the persistence of the restored beds.  相似文献   

18.
One month (but not 1–3 days) after intermittent morphine administration, the hyperresponsiveness of rats toward the locomotor effects of morphine and amphetamine was associated with an increase in dopamine (DA) D-1 receptor-stimulated adenylyl cyclase activity and enhanced steady state levels of preprodynorphin gene expression in slices of the caudate/putamen and nucleus accumbens. Such an enduring increase in postsynaptic D-1 receptor efficacy also occurred in cultured γ-aminobutyric acid (GABA) neurons of the striatum obtained from rats prenatally treated with morphine. Interestingly, in vitro glucocorticoid receptor activation in these cultured striatal neurons by corticosterone potentiated this neuroadaptive effect of prior in vivo morphine exposure. Since activation of glucocorticoid receptors by corticosterone did not affect D-1 receptor functioning in cultured neurons of saline-pretreated rats, prior intermittent exposure to morphine (somehow) appears to induce a long-lasting state of corticosterone hyperresponsiveness in striatal neurons. Therefore, DA-sensitive striatal GABA neurons may represent common neuronal substrates acted upon by morphine and corticosterone. We hypothesize that the delayed occurrence of these long-lasting morphine-induced neuroadaptive effects in GABA/dynorphin neurons of the striatum is involved in the enduring nature of behavioral sensitization to drugs of abuse and cross-sensitization to stressors. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

19.
Murine neuroblastoma cells in culture are able to synthesize the putative neurotransmitters--acetylcholine, dopamine, norepinephrine, tyramine, octopamine, histamine, serotonin and γ-aminobutyric acid (GABA). They possess not only synthetic, but also degradative enzymes involved in metabolism of these transmitters, and many of these enzymes increase in activity as the cells “differentiate”. Catecholamines, and perhaps other transmitters, appears to be stored within membrane-limited vesicles which accumulate within the process endings of these cells. Uptake of some transmitters, GABA, glycine, dopamine and norepinephrine, shows characteristics of the high affinity transport systems observed in other neuronal populations; uptake of choline and other amino acids is similar to that in non-neuronal populations. Cells show receptor sensitivities to acetyl-choline, dopamine, norepinephrine, prostaglandins E1 and morphine, as demonstrated by electrophysiologic, toxin binding and cyclic nucleotide studies.  相似文献   

20.
Brain microdialysis has become a frequently used method to study the extracellular concentrations of neurotransmitters in specific areas of the brain. For years, and this is still the case today, dialysate concentrations and hence extracellular concentrations of neurotransmitters have been interpreted as a direct index of the neuronal release of these specific neurotransmitter systems. Although this seems to be the case for neurotransmitters such as dopamine, serotonin and acetylcholine, the extracellular concentrations of glutamate and GABA do not provide a reliable index of their synaptic exocytotic release. However, many microdialysis studies show changes in extracellular concentrations of glutamate and GABA under specific pharmacological and behavioural stimuli that could be interpreted as a consequence of the activation of specific neurochemical circuits. Despite this, we still do not know the origin and physiological significance of these changes of glutamate and GABA in the extracellular space. Here we propose that the changes in dialysate concentrations of these two neurotransmitters found under specific treatments could be an expression of the activity of the neurone-astrocyte unit in specific circuits of the brain. It is further proposed that dialysate changes of glutamate and GABA could be used as an index of volume transmission mediated actions of these two neurotransmitters in the brain. This hypothesis is based firstly on the assumption that the activity of neurones is functionally linked to the activity of astrocytes, which can release glutamate and GABA to the extracellular space; secondly, on the existence of extrasynaptic glutamate and GABA receptors with functional properties different from those of GABA receptors located at the synapse; and thirdly, on the experimental evidence reporting specific electrophysiological and neurochemical effects of glutamate and GABA when their levels are increased in the extracellular space. According to this concept, glutamate and GABA, once released into the extracellular compartment, could diffuse and have long-lasting effects modulating glutamatergic and/or GABAergic neurone-astrocytic networks and their interactions with other neurotransmitter neurone networks in the same areas of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号