首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aims

The biotic ligand model (BLM) is a bioavailability model for metals based on the concept that toxicity depends on the concentration of metal bound to a biological binding site; the biotic ligand. Here, we evaluated the BLM to interpret and explain mixture toxicity of metals (Cu and Zn).

Methods

The mixture toxicity of Cu and Zn to barley (Hordeum vulgare L.) was tested with a 4 days root elongation test in resin buffered nutrient solutions. Toxicity of one toxicant was tested in presence or absence of a low effect level of the other toxicant or in a ray design with constant toxicant ratios. All treatments ran at three different Ca concentrations (0.3, 2.2 and 10?mM) to reveal ion interaction effects.

Results

The 50 % effect level (EC50) of one metal, expressed as the free ion in solution, significantly (p?<?0.05) increased by adding a low level effect of the other metal at low Ca. Such antagonistic interactions were smaller or became insignificant at higher Ca levels. The Cu EC10 was unaffected by Zn whereas the Zn EC10 increased by Cu at low Ca. These effects obeyed the BLM combined with the independent action model for toxicants.

Conclusions

The BLM model explains the observed interactions by accounting for competition between both metals free ions and Ca2+ at the Cu and Zn biotic ligands. The implications of these findings for Cu/Zn interactions in soil are discussed.  相似文献   

2.
Chemical speciation controls the bioavailability and toxicity of metals in aquatic systems and regulatory agencies are recognizing this as they develop updated water quality criteria (WQC) for metals. The factors that affect bioavailability may be quantitatively evaluated with the biotic ligand model (BLM). Within the context of the BLM framework, the 'biotic ligand' is the site where metal binding results in the manifestation of a toxic effect. While the BLM does account for the speciation and complexation of dissolved metal in solution, and competition among the free metal ion and other cations for binding sites at the biotic ligand, it does not explicitly consider either the physiological effects of metals on aquatic organisms, or the direct effect of water chemistry parameters such as pH, Ca(2+)and Na(+) on the physiological state of the organism. Here, a physiologically-based model of survival time is described. In addition to incorporating the effects of water chemistry on metal availability to the organism, via the BLM, it also considers the interaction of water chemistry on the physiological condition of the organism, independent of its effect on metal availability. At the same time it explicitly considers the degree of interaction of these factors with the organism and how this affects the rate at which cumulative damage occurs. An example application of the model to toxicity data for rainbow trout exposed to silver is presented to illustrate how this framework may be used to predict survival time for alternative exposure durations. The sodium balance model (SBM) that is described herein, a specific application of a more generic ion balance model (IBM) framework, adds a new physiological dimension to the previously developed BLM. As such it also necessarily adds another layer of complexity to this already useful predictive framework. While the demonstrated capability of the SBM to predict effects in relation to exposure duration is a useful feature of this mechanistically-based framework, it is envisioned that, with suitable refinements, it may also have utility in other areas of toxicological and regulatory interest. Such areas include the analysis of time variable exposure conditions, residual after-effects of exposure to metals, acclimation, chronic toxicity and species and genus sensitivity. Each of these is of potential utility to longer-term ongoing efforts to develop and refine WQC for metals.  相似文献   

3.
The biotic ligand modeling (BLM) approach has gained recent widespread interest among the scientific and regulatory communities because of its potential for developing ambient water quality criteria (AWQC), which are site-specific, and in performing aquatic risk assessment for metals. Currently, BLMs are used for predicting acute toxicity (96?h LC50 for fish) in any defined water chemistry. The conceptual framework of the BLM has a strong physiological basis because it considers that toxicity of metals occurs due to the binding of free metal ions at the physiologically active sites of action (biotic ligand, e.g., fish gill) on the aquatic organism, which can be characterized by conditional binding constants (log K) and densities (Bmax). At present, these models assume that only water chemistry variables such as competing cations (e.g., Na+, Ca2+, Mg2+, and H+), inorganic ligands (e.g., hydroxides, chlorides, carbonates), and organic ligands (dissolved organic matter) can influence the bioavailability of free metal ions and thereby the acute toxicity of metals. Current BLMs do not consider the effects of chronic history of the fish in modifying gill-metal binding characteristics and acute toxicity. Here, for Cu, Cd, and Zn, we review a number of recent studies on the rainbow trout that describe significant modifying effects of chronic acclimation to waterborne factors (hardness and chronic metal exposure) and dietary composition (metal and essential ion content) on gill metalbinding characteristics (on both log K and Bmax) and on acute toxicity. We conclude that the properties of gill-metal interaction and toxicological sensitivity appear to be dynamic rather than fixed, with important implications for further development of both acute and chronic BLMs. Now that the initial framework of the BLM has been established, future research needs a more integrative approach with additional emphasis on the dynamic properties of the biotic ligand to make it a successful tool for ecological risk assessment of metals in the natural environment.  相似文献   

4.
The biotic ligand model (BLM) and a cellular molecular mechanism approach represent two approaches to the correlation of metal speciation with observed toxicity to aquatic organisms. The two approaches are examined in some detail with particular reference to class B, or soft metals. Kinetic arguments are presented to suggest situations that can arise where the BLM criterion of equilibrium between all metal species in the bulk solution and the biotic ligand may not be satisfied and what might the consequences be to BLM predictive capability. Molecular mechanisms of toxicity are discussed in terms of how a class B metal might enter a cell, how it is distributed in a cell, and how the cell might respond to the unwanted metal. Specific examples are given for copper as an organism trace essential metal, which is toxic in excess, and for silver, a non-essential metal. As class B metals all bind strongly to sulfur, regulation of these metals requires that all S(II-) species be accounted for in aquatic systems, even under oxic conditions.  相似文献   

5.
Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca2+ and Mg2+ but not with K+ and Na+. The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H+ competition with Cr3+ bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH2+ in solution culture. Stability constants were obtained for the binding of Cr3+, CrOH2+, Ca2+, Mg2+ and H+ with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics.  相似文献   

6.
Rainbow trout (Oncorhynchus mykiss) are often used to estimate important biotic ligand model (BLM) parameters, such as metal-binding affinity (log K) and capacity (Bmax). However, rainbow trout do not typically occupy metal-contaminated environments, whereas yellow perch (Perca flavescens) are ubiquitous throughout most of North America. This study demonstrates that dynamic processes that regulate Cu uptake at the gill differ between rainbow trout and yellow perch. Rainbow trout were more sensitive to acute aqueous Cu than yellow perch, and toxicity was exacerbated in soft water relative to similar exposures in hard water. Whole body Na loss rate could account for acute Cu toxicity in both species, as opposed to new Cu uptake rate that was not as predictive. Time course experiments using radiolabelled Cu (64Cu) revealed that branchial Cu uptake was rather variable within the first 12 h of exposure, and appeared to be a function of Cu concentration, water hardness, and fish species. After 12 h, new branchial Cu concentrations stabilized in both species, suggesting that metal exposures used to estimate BLM parameters should be increased in duration from 3 h to 12+ h. In rainbow trout, 71% of the new Cu bound to the gill was exchangeable (i.e., able to either enter the fish or be released back to the water), as opposed to only 48% in yellow perch. This suggests that at equal exposure concentrations, proportionally more branchial Cu can be taken up by rainbow trout than yellow perch, which can then go on to confer toxicity. These qualitative differences in branchial Cu handling between the two species emphasize the need to develop BLM parameters for each species of interest, rather than the current practice of extrapolating BLM results derived from rainbow trout (or other laboratory-reared species) to other species. Data reported here indicate that a one-size-fits-all approach to predictive modeling, mostly based on rainbow trout studies, may not suffice for making predictions about metal toxicity to yellow perch—that is, a species that inhabits metal-contaminated lakes around northern Canadian industrial operations.  相似文献   

7.
We investigated the bioaccumulation and acute toxicity (48 h or 96 h) of Ni in four freshwater invertebrate species in two waters with hardness of 40 (soft water) and 140 mg L− 1 as CaCO3 (hard water). Sensitivity order (most to least) was Lymnaea stagnalis > Daphnia pulex > Lumbriculus variegatus > Chironomus riparius. In all cases water hardness was protective against acute Ni toxicity with LC50 values 3–3.5 × higher in the hard water vs. soft water. In addition, higher water hardness significantly reduced Ni bioaccumulation in these organisms suggesting that competition by Ca and Mg for uptake at the biotic ligand may contribute to higher metal resistance. CBR50 values (Critical Body Residues) were less dependent on water chemistry (i.e. more consistent) than LC50 values within and across species by ~ 2 fold. These data support one of the main advantages of the Tissue Residue Approach (TRA) where tissue concentrations are generally less variable than exposure concentrations with respect to toxicity. Whole body Ni bioaccumulation followed Michaelis–Menten kinetics in all organisms, with greater hardness tending to decrease Bmax with no consistent effect on Kd. Across species, acute Ni LC50 values tended to increase with both Kd and Bmax values — i.e. more sensitive species exhibited higher binding affinity and lower binding capacity for Ni, but there was no correlation with body size. With respect to biotic ligand modeling, log KNiBL values derived from Ni bioaccumulation correlated well with log KNiBL values derived from toxicity testing. Both whole body Na and Mg levels were disturbed, suggesting that disruption of ionoregulatory homeostasis is a mechanism of acute Ni toxicity. In L. stagnalis, Na depletion was a more sensitive endpoint than mortality, however, the opposite was true for the other organisms. This is the first study to show the relationship between Na and Ni.  相似文献   

8.
The Biotic Ligand Model has been previously developed to explain and predict the effects of water chemistry on the toxicity of copper, silver, and cadmium. In this paper, we describe the development and application of a biotic ligand model for zinc (Zn BLM). The data used in the development of the Zn BLM includes acute zinc LC50 data for several aquatic organisms including rainbow trout, fathead minnow, and Daphnia magna. Important chemical effects were observed that influenced the measured zinc toxicity for these organisms including the effects of hardness and pH. A significant amount of the historical toxicity data for zinc includes concentrations that exceeded zinc solubility. These data exhibited very different responses to chemical adjustment than data that were within solubility limits. Toxicity data that were within solubility limits showed evidence of both zinc complexation, and zinc-proton competition and could be well described by a chemical equilibrium approach such as that used by the Zn BLM.  相似文献   

9.
To elicit a biological response from a target organism and/or to accumulate within this organism, a metal must first interact with a cell membrane. For hydrophilic metal species, this interaction with the cell surface can be represented in terms of the formation of M-X-cell surface complexes, e.g. M(z+)+(-)X-cell<-->M-X-cell, where -X-cell is a cellular ligand present at the cell surface. According to the free-ion model, or its derivative the biotic ligand model (BLM), the biological response elicited by the metal will be proportional to [M-X-cell]. In this paper, using freshwater algae as our test species, we examine some of the key assumptions that underlie the BLM, namely that metal internalization is slow relative to the other steps involved in metal uptake (i.e. the M-X-cell complex is in equilibrium with metal species in solution), that internalization occurs via cation transport, and that internalization must occur for toxicity to appear. Recent experiments with freshwater algae are described, demonstrating anomalously high metal accumulation and/or toxicity in the presence of a common low molecular weight metabolite (alanine), or in the presence of an assimilable inorganic anion (thiosulfate). The possible implications of these findings for the application of the BLM to higher organisms are discussed.  相似文献   

10.
Summary The toxicity of Cu, Ni and Fe individually, as well as in combination (Cu + Ni, Cu + Fe, Ni + Fe), on growth-rate depression, uptake of NO3 and NH4 +, photosynthesis, nitrate reductase and urease activity ofChlorella vulgaris has been studied. All the test metals when used individually showed pronounced toxicity on all the parameters studied. However, their interactive effect was mostly antagonistic except for Cu + Ni (synergism). Pre-addition of Fe offered more protection to the cells against copper and nickel toxicity. The data of statistical analysis reconfirmed that14C02 uptake is the most sensitive parameter (significant atP<0.005, both for time and treatment) than others in metal toxicity assessment. However, these results suggest further that exposure time and sequence of metal addition are very important in biomonitoring of heavy metal toxicity.  相似文献   

11.
The acute toxicity of lead (Pb) was examined for fathead minnows (Pimephales promelas; 96-h) and daphnids (Ceriodaphnia dubia; 48-h) in waters modified for hardness (as CaSO4), dissolved organic carbon (DOC; as Aldrich humic acid) and alkalinity (as NaHCO3) for parameterization of an acute freshwater biotic ligand model (BLM). Additionally, acute (96-h) and chronic (30-d) bioassays were performed for P. promelas to more clearly define the influence of pH (5.5–8.3) on Pb toxicity as modified by addition of HCl or NaOH using an automated titration system. Results indicate that Ca2+ is protective against acute Pb toxicity to P. promelas but not C. dubia. Strong protection was afforded by DOC and NaHCO3 against acute Pb toxicity to P. promelas, whereas milder protection was observed for C. dubia with both parameters. Dissolved Pb LC50s from the P. promelas pH bioassays revealed a complex effect of pH on Pb toxicity, likely explained in part by Pb speciation and the competitive interaction of H+ with ionic Pb2+. Chronic pH bioassays also demonstrated that 30-d growth is not impaired in fathead minnows at relevant Pb concentrations. The findings reported herein suggest that development of separate BLMs for P. promelas and C. dubia should be considered.  相似文献   

12.
Soil-dwelling microalgae as pioneer organisms may play an essential role in degraded post-industrial areas. Zn and Pb resistance of two morphologically identical strains (E120, E5) of the soil microalga Eustigmatos sp. (Eustigmatophyceae) inhabiting two extremely metal polluted calamine mine spoils and Eustigmatos vischeri (Ev) from algal collection was compared. To compare Zn and Pb resistance of algal strains, toxicity parameters (72/96 h-EC50) were determined during their exposure to high Zn (50–800 μM) and Pb (5–80 μM) concentrations. Both Zn- and Pb-EC50 values increased as follows: Ev < E5 < E120. The E120 strain from the mine spoil with the highest metal contents appeared to be two times more Zn and Pb resistant (96 h-EC50?=?416 μM Zn, 39.8 μM Pb) than E5 strain from the less metal polluted site and 4.7–8.8 times more than Ev. Differences in Zn and Pb accumulation as well as in metal-induced membrane lipid peroxidation were also observed. The present study highlights the evolution of algal ecotypes of high but various Zn and Pb resistance as a result of natural exposure to different metal concentrations in their habitats. The algae of high heavy metal resistance could have a practical application in remediation of contaminated soils of anthropogenic origin.  相似文献   

13.
A previously developed biotic ligand model (BLM) was validated for its capacity to predict acute 48-h EC(50) values of copper to Daphnia magna in 25 reconstituted media with different pH values and concentrations of artificial dissolved organic carbon, Ca, Mg and Na. Before the BLM validation, fitting of measured (with a copper ion-selective electrode) and calculated (with the BLM) Cu(2+)-activity was performed by adjusting the WHAM model V (i.e. the metal-organic speciation part of the BLM) copper-proton exchange constant to pK(MHA)=1.9. Using this value, the 48-h EC(50) values observed agreed very well with BLM-predicted EC(50) values for tests performed at pH<8, but not at all for tests performed at pH>8. Additional experiments demonstrated that this was due to toxicity of the CuCO(3) complex, which is the most abundant inorganic copper species at pH>8. This was incorporated into the initial BLM by allowing the binding of CuCO(3) (next to Cu(2+) and CuOH(+)) to the biotic ligand of D. magna. The affinity of CuOH(+) and CuCO(3) for the biotic ligand was approximately five- and 10-fold lower than that of Cu(2+), respectively. With the refined BLM, 48-h EC(50) values could be accurately predicted within a factor of two not only in all 25 reconstituted media, but also in 19 natural waters. This validated and refined BLM could support efforts to improve the ecological relevance of risk assessment procedures applied at present.  相似文献   

14.
Bioaccumulation of metals in mixtures may demonstrate competitive, anticompetitive, or non-competitive inhibition, as well as various combinations of these and/or enhancement of metal uptake. These can be distinguished by plotting (metal in water)/(metal in tissue) against metal in water and comparison to equivalent plots for single-metal exposure. For the special case of pure competitive inhibition where only one site of uptake is involved, inhibition of metal accumulation in any metal mixture can be predicted from bioaccumulation of the metals when present singly. This is consistent with the commonly used Biotic Ligand Model (BLM) but does not explain bioaccumulation of metals in Hyalella azteca. Options for modelling toxicity of metal mixtures include concentration or response addition based on metal concentrations in either water or tissues. If the site of toxic action is on the surface of the organism, if this is the same as the site of metal interaction for bioaccumulation, if there is only one such type of site, and if metal bioaccumulation interactions are purely competitive (as in the BLM), then metal toxicity should be concentration additive and predictable from metal concentrations in either water or tissues. This is the simplest toxicity interaction to model but represents only one of many possibilities. The BLM should, therefore, be used with caution when attempting to model metal interactions, and other possibilities must also be considered.  相似文献   

15.
Zebrafish (Danio rerio) has been adopted as a model for behavioral, immunological and toxicological studies. Mercury is a toxic heavy metal released into the environment. There is evidence indicating that heavy metals can modulate ionotropic receptors, including the purinergic receptor P2X7. Therefore, this study evaluated the in vivo effects of acute exposure to mercury chloride (HgCl2) in zebrafish larvae and to investigate the involvement of P2X7R in mercury-related toxicity. Larvae survival was evaluated for 24 h after exposure to HgCl2, ATP or A740003. The combination of ATP (1 mM) and HgCl2 (20 μg/L) decreased survival when compared to ATP 1 mM. The antagonist A740003 (300 and 500 nM) increased the survival time, and reversed the mortality caused by ATP and HgCl2 in association. Quantitative real time PCR showed a decrease of P2X7R expression in the larvae treated with HgCl2 (20 μg/L). Evaluating the oxidative stress our results showed decreased CAT (catalase) activity and increased MDA (malondialdehyde) levels. Of note, the combination of ATP with HgCl2 showed an additive effect. This study provides novel evidence on the possible mechanisms underlying the toxicity induced by mercury, indicating that it is able to modulate P2X7R in zebrafish larvae.  相似文献   

16.
Heavy metal ions are potent inhibitors of protein folding   总被引:3,自引:0,他引:3  
Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.  相似文献   

17.

Background

Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem.

Results

The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively.

Conclusions

Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.  相似文献   

18.
The macroalga Gracilaria lemaneiformis is an important and commercially valuable renewable resource. It is distributed widely in shallow marine waters but grows mostly on tropical or subtropical coasts. We investigated the accumulation of Cd, Cu, and Pb by live G. lemaneiformis under low concentrations. There was a positive correlation between the organisms’ metal concentrations and exposure concentrations. When exposed to both Cu and Cd, the concentrations of Cu and Cd in G. lemaneiformis were higher than those exposed to solutions of Cu and Cd alone. However, the concentrations of heavy metals in G. lemaneiformis were not markedly different (p?<?0.05) between the treatment groups and the control groups. We analyzed the results with nonlinear curve fitting and employed a two-compartment model to study the accumulation kinetics of heavy metals by G. lemaneiformis. The uptake rate constants and bioconcentration factors (BCFs) of the metals decreased with increased exposure concentration. The theoretical equilibrium concentrations increased significantly with the exposure concentrations. Our results suggested that G. lemaneiformis obviously accumulated heavy metals from seawater. As an important resource for food and pharmaceuticals, G. lemaneiformis should be cultivated in clear seawater.  相似文献   

19.
Ling Li  Xuyu Yan 《Phyton》2021,90(6):1559-1572
Alleviating heavy metal pollution in farmland soil, and heavy metal toxicity in plants is the focus of global agricultural environmental research. Melatonin is a kind of indoleamine compound that wide exists in organisms; it is currently known as an endogenous free radical scavenger with the strongest antioxidant effect. As a new plant growth regulator and signaling molecule, melatonin plays an important role in plant resistance to biotic or abiotic stress. Recent studies indicate that melatonin can effectively alleviate heavy metal toxicity in crop plants, which provides a new strategy to minimize heavy metal pollution in crop plants. This study summarizes the research progress on the role of melatonin in alleviating heavy metal toxicity in crop plants and the related physiological and ecological mechanisms such as reducing the concentration of heavy metals in the rhizosphere, fixing and regionally isolating of heavy metals, maintaining the mineral element balance, enhancing the antioxidant defense system and interacting with hormonal signaling. Furthermore, future prospects for the mechanism of melatonin in regulating heavy metal toxicity, the pathway regulating synthesis and catabolism, and the interaction mechanism of melatonin signaling and other phytohormones are presented in this paper, with the goal of providing a theoretical basis for controlling heavy metal ion accumulation in crop plants grown in contaminated soil.  相似文献   

20.
Superficial (0 to 2 cm) sediments were sampled from 62 sites in Kattegat and Skagerrak during autumn 1989 and spring 1990, tested for toxicity to Daphnia magna and Nitocra spinipes (Crustacea) and analyzed for heavy metals (Cd, Cr, Cu, Hg, N, Pb, Zn), nutrients (N and P) and organic carbon. Whole sediment toxicity to Nitocra spinipes, expressed as 96-h LC50, ranged from 1.8 to > > 32 percent sediment (wet wt), which is equivalent to 0.63 to 53 percent dry wt. Sediment total metal concentrations (mg kg-1 dry wt) ranged from 0.01 to 0.32 for Cd, 8 to 57 for Cr, 3 to 40 for Cu, 0.03 to 0.86 for Hg, 3 to 43 for Ni, 6 to 37 for Pb and 21 to 156 for Zn. Analyzed concentrations of heavy metals were tested for correlation with whole sediment toxicity normalized to dry wt, and significant correlations (Spearman p<0.05) were found for Cd, Cr, Cu, Hg, and Ni. However, the analyzed concentrations of these metals were below the spiked sediment toxicity of these heavy metals to N. spinipes, except for Cr and Zn for which analyzed maximum concentrations approached the 96-h spiked sediment LC50s. There was no improvement in correlation between the sum of heavy metal concentrations normalized to their spiked toxic concentrations (Toxic Unit approach) and the whole sediment toxicity. Calculated heavy-metal-derived toxicity based on toxic units and whole sediment toxicity ranged from 0.1 to 24 (mean value 2.3 and SD 4.2). Theoretically, a value of 1.0 would explain whole sediment toxicity from measured metal concentrations using this approach. Thus, in spite of the fact that the total concentrations of the heavy metals were sufficient to cause toxicity based on an additive model for most of these sediments, the observed toxicity of the sediments from Kattegat and Skagerrak could not exclusively be explained by the concentrations of heavy metals, except for Cr and Zn at their maximum concentrations. Therefore, other pollutants than these heavy metals must also be considered as possible sediment toxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号