首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Anch TX-I and II PLA2 were purified from Anthothoe chilensis (Lesson, 1830) from the extract of the anemone after only two chromatographic step using molecular exclusion chromatography (Sephadex G-75) and reverse phase HPLC on μ-Bondapak C18 column. Both PLA2 showed a molecular mass of ~ 14 kDa determined by MALDI-TOF mass spectrometry and showed a high catalytic activity (data not showed). Although homologous with mammalian or snake venom group I PLA2s, Anch TX-I and II is sufficiently structurally different for the question of its placement into the existing PLA2 classification scheme to arise. In addition, Anch TX-I and II, despite possessing many common structural features, also differ in some important structural properties. The amino acid sequence of both PLA2 (Anch TX-I and III) showed high amino acid sequence identity with PLA2Rhopilema nomadica and Bunodosoma caissarum Cnidaria and PLA2 of group III protein isolated from the Mexican lizard Heloderma horridum horridum and Heloderma suspectum. In addition, Anch TX-I and Anch TX-II showed high amino acid sequence identity with PLA2 from group III also showed significant overall homology to bee Apis dorsata, Bombus terrestris and Bombus pennsylvanicus and PLA2. We also investigated the in vivo edematogenic activity of Anch TX-I and Anch TX-II in a model of paw and skin edema in rats and observed that both are able to induce dose-dependent edema.  相似文献   

2.
Cdr-12 and Cdr-13 isoforms of PLA2, a D49 protein, were purified from Crotalus durissus ruruima venom after one chromatographic step, reverse phase HPLC on μ-Bondapack C-18. The molecular mass by SDS-PAGE of Cdr-12 and Cdr-13 isoforms of PLA2 was 14333.49 Da and 14296.42 Da, respectively and confirmed by MALDI-TOF mass spectrometry .The amino acid composition showed that both isoforms Cdr-12 and Cdr-13 have a high content of Lys, Tyr, Gly, Arg, and 14 half-Cys residues, typical of a basic PLA2. The isoforms Cdr-12 and Cdr-13 had a sequence of amino acids of 122 amino acid residues, being Cdr-12: SLLQFNKMIK FETRKNAIPF YAFYGCYCGW GGQGRPKDAT DRCCIVHDCC YGKLAKCNTK WDFYRYSLRS GYFQCGKGTW CEQQICECDR VAAECLRRSL STYRYGYMIY PDSRCREPSE TC and pI value 8.37 and Cdr-13: SLVQFEKMIK EETGKNAVPF YAFYGCYCGW GGRGRPKDAT DRCCIVHDCC YEKLVKCNTK WDFYRYSLRS GYFQCGKGTW CEQQICECDR VAAECLRRSL STYRYGKMIY PDSRCREPSE TC with a pI value of 8.13 This sequence shows high identity values when compared to other D49 PLA2s isolated from venoms of crotalics snakes. Skeletal muscle preparations from the young chicken have been previously used in order to study the effects of toxins on neuromuscular transmission, providing an important opportunity to study the differentiated behavior of a toxin before more than one model, because it shows differences in its sensibilities. In mice, the PLA2 isoforms Cdr-12 and Cdr-13 induced myonecrosis and edema, upon intramuscular or subcutaneous injections, respectively. In vitro, Cdr-12 and Cdr-13 isoforms of PLA2, caused a potent blockade of neuromuscular transmission in young chicken biventer cervicis preparation and produced cytotoxicity in murine C2C12 skeletal muscle myotubes and lack cytolytic activity upon myoblasts in vitro. Thus, the combined structural and functional information obtained identify Cdr-12 and Cdr-13 isoforms as members of the PLA2 family, which presents the typical bioactivities described for such proteins.  相似文献   

3.
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A2 (PLA2) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca2+-activated chloride current (ICl(Ca)) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited ICl(Ca) in a concentration-dependent manner (IC50 = 4.2 μM, nHill = 1.1), without affecting the L-type Ca2+ current. Unlike ACA, the non-selective PLA2 inhibitor bromophenacyl bromide (BPB; 50 μM) had no effect on ICl(Ca). In addition, the analgesic NSAID structurally-related to ACA, diclofenac (50 μM) also had no effect on ICl(Ca), whereas the current in the same cells could be suppressed by chloride channel blockers flufenamic acid (FFA; 100 μM) or 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS;100 μM). Besides ICl(Ca), ACA (50 μM) also suppressed the cAMP-activated chloride current, but to a lesser extent. It is proposed that the inhibitory effects of ACA on ICl(Ca) are PLA2-independent and that the drug may serve as a useful tool in understanding the nature and function of cardiac anion channels.  相似文献   

4.
A new crotoxin B isoform PLA2 (F6a), from Crotalus durissus collilineatus was purified from by one step reverse phase HPLC chromatography using μ-Bondapack C-18 column analytic. The new crotoxin B isoform PLA2 (F6a), complex crotoxin, the catalytic subunit crotoxin B isoform PLA2 (F6a) and two crotapotin isoforms (F3 and F4), were isolated from the venom of Crotalus durissus collilineatus. The crotapotins isoforms F3 and F4 had similar chemical properties, the two proteins different in their ability to inhibit of isoforms of PLA2 (F6 and F6a). The molecular masses estimated by MALDI-TOF mass spectrometry were: crotoxin B: 14,943.14 Da, crotapotin F3: 8,693.24 Da, and crotapotin F4: 9 314.56 Da. The new crotoxin B isoform PLA2 (F6a) contained 122 amino acid residues and a pI of 8.58. Its amino acid sequence presents high identity with those of other PLA2s, particularly in the calcium binding loop and active site helix 3. It also presents similarities in the C-terminal region with other myotoxic PLA2s. The new crotoxin B isoform PLA2 (F6a) contained 122 amino acid residues, with a primary structure of HLLQFNKMIK FETRRNAIPP YAFYGCYCGW GGRGRPKDAT DRCCFVHDCC YGKLAKCNTK WDFYRYSLKS GYITCGKGTW CEEQICECDR VAAECLRRSL STYRYGYMIY PDSRCRGPSE TC. A neuromuscular blocking activity was induced by crotoxin and new crotoxin B isoform PLA2 (F6a) in the isolated mouse phrenic nerve diaphragm and the biventer cervicis chick nerve-muscle preparation. Whole crotoxin was devoid of cytolytic activity upon myoblasts and myotubes in vitro, whereas new crotoxin B isoform PLA2 (F6a) was clearly cytotoxic to these cells.  相似文献   

5.
The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A2 (PLA2) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1 μg/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10 μg/insect) or PAF (1 μg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA2 activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.  相似文献   

6.
Phospholipases A2 (PLA2) are major components of snake venoms, exerting a variety of relevant toxic actions such as neurotoxicity and myotoxicity, among others. Since the majority of toxic PLA2s are basic proteins, acidic isoforms and their possible roles in venoms are less understood. In this study, an acidic enzyme (BaspPLA2-II) was isolated from the venom of Bothrops asper (Pacific region of Costa Rica) and characterized. BaspPLA2-II is monomeric, with a mass of 14,212 ± 6 Da and a pI of 4.9. Its complete sequence of 124 amino acids was deduced through cDNA and protein sequencing, showing that it belongs to the Asp49 group of catalytically active enzymes. In vivo and in vitro assays demonstrated that BaspPLA2-II, in contrast to the basic Asp49 counterparts present in the same venom, lacks myotoxic, cytotoxic, and anticoagulant activities. BaspPLA2-II also differed from other acidic PLA2s described in Bothrops spp. venoms, as it did not show hypotensive and anti-platelet aggregation activities. Furthermore, this enzyme was not lethal to mice at intravenous doses up to 100 μg (5.9 μg/g), indicating its lack of neurotoxic activity. The only toxic effect recorded in vivo was a moderate induction of local edema. Therefore, the toxicological characteristics of BaspPLA2-II suggest that it does not play a key role in the pathophysiology of envenomings by B. asper, and that its purpose might be restricted to digestive functions. Immunochemical analyses using antibodies raised against BaspPLA2-II revealed that acidic and basic PLA2s form two different antigenic groups in B. asper venom.  相似文献   

7.
8.
Phospholipase A2 (PLA2) not only plays a role in the membrane vesiculation system but also mediates membrane-raft budding and fission in artificial giant liposomes. This study aimed to demonstrate the same effects in living cells. Differentiated Caco-2 cells were cultured on filter membranes. MDCK cells were challenged with Influenza virus. The MDCK cultures were harvested for virus titration with a plaque assay. Alkaline phosphatase (ALP), a membrane-raft associated glycosylphosphatidylinositol (GPI)-anchored protein, was 70% released by adding 0.2 mmol/l lysophosphatidylcholine, which was abolished by treatment with a membrane-raft disrupter, methyl-β-cyclodextrin. Activation of calcium-independent PLA2 (iPLA2) by brefeldin A increased the apical release of ALP by approximately 1.5-fold (p < 0.01), which was blocked by PLA2 inhibitor bromoenol lactone (BEL). BEL also reduced Influenza virus production into the media (< 10%) in the MDCK culture. These results suggest that cells utilize inverted corn-shaped lysophospholipids generated by PLA2 to modulate plasma membrane structure and assist the budding of raft-associated plasma membrane particles, which virus utilizes for its budding. Brush borders are enriched with membrane-rafts and undergo rapid turnover; thus, PLA2 may be involved in the regulatory mechanism in membrane dynamism. Further, iPLA2 may provide a therapeutic target for viral infections.  相似文献   

9.
This work aimed at the isolation and structural/functional characterization of a phospholipase A2 (CgPLA2) from the extract of the anemone Condylactis gigantea. CgPLA2 was isolated with a high purity level through three chromatographic steps, showing pI ˜ 8.6 and molecular weights of 14,500 and 29,000 for the monomer and dimer, respectively. CgPLA2 showed a high catalytic activity upon fluorescent phospholipids inducing no direct hemolytic activity. This enzyme, which is Ca2+-dependent, showed a lower stability against temperature and pH variations when compared with snake venom enzymes. The enzymatic activity was significantly reduced or completely abolished after chemical modification of CgPLA2 with BPB. Its cDNA was then obtained, with 357 base pairs which codified for a mature protein of 119 amino acid residues. A comparative analysis of the primary structure of CgPLA2 revealed 84%, 61%, 43% and 42% similarity to the PLA2s from Adamsia carciniopados, Nematostella vectensis, Vipera russelli russelli and Bothrops jararacussu, respectively.  相似文献   

10.
We have monitored the composition of supported phospholipid bilayers during phospholipase A2 hydrolysis using specular neutron reflection and ellipsometry. Porcine pancreatic PLA2 shows a long lag phase of several hours during which the enzyme binds to the bilayer surface, but only 5 ± 3% of the lipids react before the onset of rapid hydrolysis. The amount of PLA2, which resides in a 21 ± 1 Å thick layer at the water-bilayer interface, as well as its depth of penetration into the membrane, increase during the lag phase, the length of which is also proportional to the enzyme concentration. Hydrolysis of a single-chain deuterium labelled d31-POPC reveals for the first time that there is a significant asymmetry in the distribution of the reaction products between the membrane and the aqueous environment. The lyso-lipid leaves the membrane while the number of PLA2 molecules bound to the interface increases with increasing fatty acid content. These results constitute the first direct measurement of the membrane structure and composition, including the location and amount of the enzyme during hydrolysis. These are discussed in terms of a model of fatty-acid mediated activation of PLA2.  相似文献   

11.

Background

Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides and antiasthmatics. The majority of chitinase inhibitors reported are natural products like argifin, argifin linear fragments, argadin, allosamidin and disulfide-cyclized peptides. Here, we report a novel peptidic inhibitor API (Aspartic Protease Inhibitor), isolated from Bacillus licheniformis that inhibits chitinase A (ChiA) from Serratia marcescens.

Methods

The binding affinity of API with ChiA and type of inhibition was determined by the inhibition kinetics assays. Fluorescence and CD spectroscopic analysis and chemical modification of API with different affinity reagents elucidated the mechanism of binding of API with ChiA.

Results and conclusions

The peptide has an amino acid sequence N-Ile1-Cys2-Glu3-Ala4-Glu5-His6-Lys7-Trp8-Gly9-Asp10-Tyr11-Leu12-Asp13-C. The ChiA–API kinetic interactions reveal noncompetitive, irreversible and tight binding nature of API with I50 = 600 nM and Ki = 510 nM in the presence of chromogenic substrate p-nitrophenyl-N,N′-diacetyl-β-chitobioside[p-NP-(GlcNAc)2]. The inhibition progress curves show a two-step slow tight binding inhibition mechanism with the rate constant k5 = 8.7 ± 1 × 10− 3 s− 1 and k6 = 7.3 ± 0.6 × 10− 5 s− 1. CD-spectra and tryptophanyl fluorescence analysis of ChiA incubated with increasing API concentrations confirms conformational changes in enzyme structure which may be due to irreversible denaturation of enzyme upon binding of API. Chemical modifications by WRK abolished the anti-chitinase activity of API and revealed the involvement of carboxyl groups in the enzyme inactivation. Abolished isoindole fluorescence of OPTA-labeled ChiA demonstrates the irreversible denaturation of ChiA upon incubation with API for prolonged time and distortion of active site of the enzyme.

General significance

The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.  相似文献   

12.
Fucogalactans from edible Agaricus bisporus (RFP-Ab) and wild Lactarius rufus (RFP-Lr) mushrooms were obtained on aqueous extraction followed by purification. RFP-Ab had Mw 43.8 × 104 g mol−1 and RFP-Lr Mw 1.4 × 104 g mol−1. RFP-Lr had a (1 → 6)-linked α-d-Galp main-chain partially substituted at O-2 by nonreducing end-units of α-l-Fucp (29%). While RFP-Ab had a similar main chain, it was partially substituted at O-2 by nonreducing end-units of α-l-Fucp (2.8%) and β-d-Galp (14.5%), and partially methylated at HO-3. Both RFP-Lr and RFP-Ab were tested in mice against polymicrobial sepsis. Lethality rate, myeloperoxidase (MPO) activity and cytokine levels were determined. It was observed a reduction in late mortality rate by 62.5% and 50%, respectively, prevention of neutrophil accumulation in ileum and decreasing in TNF-α and IL-1β serum levels.  相似文献   

13.
The present article reports a low molecular weight aspartic protease inhibitor, API, from a newly isolated thermo-tolerant Bacillus licheniformis. The inhibitor was purified to homogeneity as shown by rp-HPLC and SDS-PAGE. API is found to be stable over a broad pH range of 2–11 and at temperature 90 °C for 2 1/2 h. It has a Mr (relative molecular mass) of 1363 Da as shown by MALDI-TOF spectra and 1358 Da as analyzed by SDS-PAGE .The amino acid analysis of the peptide shows the presence of 12 amino acid residues having Mr of 1425 Da. The secondary structure of API as analyzed by the CD spectra showed 7% α-helix, 49% β-sheet and 44% aperiodic structure. The Kinetic studies of Pepsin–API interactions reveal that API is a slow-tight binding competitive inhibitor with the IC50 and Ki values 4.0 nM and (3.83 nM–5.31 nM) respectively. The overall inhibition constant Ki? value is 0.107 ± 0.015 nM. The progress curves are time-dependent and consistent with slow-tight binding inhibition: E + I ? (k4, k5) EI ? (k6, k7) EI?. Rate constant k6 = 2.73 ± 0.32 s− 1 reveals a fast isomerization of enzyme–inhibitor complex and very slow dissociation as proved by k7 = 0.068 ± 0.009 s− 1. The Rate constants from the intrinsic tryptophanyl fluorescence data is in agreement with those obtained from the kinetic analysis; therefore, the induced conformational changes were correlated to the isomerization of EI to EI?.  相似文献   

14.
BaTX PLA2, a K49 phospholipase A2 homologue was purified from Bothrops alternatus venom after two chromatographic steps, molecular exclusion on Superdex 75 and reverse phase HPLC on μ-Bondapack C-18. A molecular mass of 13898.71 Da was determined by MALDI-TOF mass spectrometry. The amino acid composition showed that BaTX has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA2. The complete amino acid sequence of BaTX PLA2 contains 121 residues, resulting in a calculated pI value of 8.63. This sequence shows high identity values when compared to other K49 PLA2s isolated from the venoms of viperid snakes. Lower identity is observed in comparison to D49 PLA2s. The sequence was SLFELGKMIL QETGKNPAKS YGAYYCYCGW GGQGQPKDAT DRCCYVHKCC YKKLTGCNPK KDRYSYSWKD KTIVCGENNS CLKELCECDK AVAICLRENL NTYNKKYRYY LKPLCKKADA C. In mice, BaTX induced myonecrosis and edema, upon intramuscular or subcutaneous injections, respectively. The LD50 of BaTX was 7 μg/g body weight, by intravenous route. In vitro, the toxin caused a potent blockade of neuromuscular transmission in young chicken biventer cervicis preparations. The blockage 50% was achieved at a concentration of 0.03 μM: 40 ± 0.4 min and 0.07 μM: 35 ± 0.3 min. Moreover, this protein induced a rapid cytolytic effect upon mouse skeletal muscle myoblasts in culture. Thus, the combined structural and functional information obtained identify BaTX as a new member of the K49 PLA2 family, which presents the typical bioactivities described for such proteins.  相似文献   

15.
Two phospholipases A2 (PLA2) fromNaja naja atra andNaja nigricollis snake venoms were subjected to tyrosine modification withp-nitrobenzenesulfonyl fluoride (NBSF) atpH 8.0. Three major NBS derivatives from each PLA2 were separated by high-performance liquid chromatography. The results of amino acid analysis showed that only two Tyr residues out of nine were modified, and the modified residues were identified to be Tyr-3 and Tyr-63 (or Tyr-62) in the sequence. Spectrophotometric titration indicated that the phenolic group of Tyr-3 and Tyr-63 (or Tyr-62) had apK of 10.1 and 11.0, respectively. The reactivity of Tyr-3 toward NBSF was not affected in the presence or absence of Ca 2+; however, the reactivity of Tyr-63 (or Tyr-62) toward NBSF was greatly enhanced by Ca2+. Modification of Tyr-63 (or Tyr-62) resulted in a marked decrease in both lethality and enzymatic activity. Conversely, modification of Tyr-3 inN. naja atra PLA2 could cause more than a sixfold increase in lethal potency, in sharp contrast to the loss of enzymatic activity.Tyrosine-63-modifiedN. naja atra PLA2 exhibited the same Ca2+-induced difference spectra as that of native PLA2, indicating that the Ca2+-binding ability of Tyr-63-modifiedN. naja atra PLA2 was not impaired. However, Tyr-3-modified PLA2 and all Tyr-modifiedN. nigricollis CMS-9 were not perturbed by Ca2+, revealing that the Ca2+-binding ability have been lost after tyrosine modification. These results suggest that Tyr-62 inN. nigricollis CMS-9 and Tyr-3 in both enzymes are involved in Ca2+ binding. AtpH 8.0, both native PLA2 enzymes enhance the emission intensity of 8-anilinonaphthalene sulfonate (ANS) dramatically, while all of the Tyr-modified derivatives did not enhance the emission intensity at all either in the presence or absence of Ca2+, suggesting that the hydrophobic pocket that interacts with ANS might be the substrate binding site, in which Tyr-3 and Tyr-63 (or Tyr-62) are involved.  相似文献   

16.
Cannabinoid CB1 receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB1 receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB1 receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.7 nM) and functional assays (Ki = 0.2 nM). The compound has low affinity (Ki = 7600 nM) for human CB2 receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10 mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB1 receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB1 receptor competitive antagonist that may further our understanding of the endocannabinoid system.  相似文献   

17.
Grapefruit is one of the most susceptible citrus genotypes to Asiatic Citrus Canker, caused by Xanthomonas axonopodis pv. citri (Xac), that can cause severe losses in citrus yield and quality. Although much is known about citrus response to Xac, little is known of the role of antioxidant metabolism. Grapefruit leaves were artificially injected with a strain of Xac obtained from a commercial grove in Florida and components of oxidative metabolism were measured. Symptoms observed included water soaking (2 dai; days after inoculation), raised and ruptured epidermis (6-8 dai), formation of necrotic lesions (16 dai), and leaf abscission (21 dai). The Xac population increased to a maximum (≈109 CFU/cm2) 8 dai and then declined to ≈107 CFU/cm2 by 20 dai. Lipid peroxidation was higher in infected leaves than uninoculated controls from 4 to 21 dai indicating greater oxidative stress. H2O2 concentration demonstrated a biphasic pattern with peak concentrations at 4 and 13 dai and minimum concentrations that were lower than the controls at 10 and 20 dai. The H2O2 concentration somewhat corresponded with superoxide dismutase (SOD) activity, which generates H2O2 via dismutase of superoxide ions. Total SOD activity in Xac-infected leaves increased to a maximum at 4 dai, the day of highest H2O2 concentration, and then declined and remained at or below controls. Mn-SOD and Fe-SOD activities both increased to maximum activities at 4 dai. Mn-SOD had four isoforms in Xac-infected leaves but only three in the controls. Fe-SOD had three isoforms in both infected and control plants. Suppression of H2O2 in Xac-infected leaves also corresponded to higher activities of the H2O2 catabolising enzymes catalase (CAT), ascorbate peroxidase (APOD), and peroxidase (POD). Two additional CAT isoforms were detected in infected leaves and not the controls. Three POD isoforms were detected in both control and infected leaves. Previous research has shown that Xac is sensitive to intraplant H2O2 concentration, however, the pattern of Xac in this study did not correspond to H2O2 concentration, which initially increased due to enhanced SOD activity, but was later suppressed apparently with the aid of peroxidases. In conclusion, Xac infection altered H2O2 metabolism in grapefruit leaves by changes in the activities and isoforms of SODs, CATs, PODs and APOD.  相似文献   

18.
Secretory phospholipase A2 is involved in inflammatory processes and was previously shown to be inhibited by lipophilic tetracyclines such as minocycline (minoTc) and doxycycline. Lipophilic tetracyclines might be a new lead compound for the design of specific inhibitors of secretory phospholipase A2, which play a crucial role in inflammatory processes. Our X-ray crystal structure analysis at 1.65 Å resolution of the minoTc complex of phospholipase A2 (PLA2) of the Indian cobra (Naja naja naja) is the first example of nonantibiotic tetracycline interactions with a protein. MinoTc interferes with the conformation of the active-site Ca2+-binding loop, preventing Ca2+ binding, and shields the active site from substrate entrance, resulting in inhibition of the enzyme. MinoTc binding to PLA2 is dominated by hydrophobic interactions quite different from antibiotic recognition of tetracyclines by proteins or the ribosome. The affinity of minoTc for PLA2 was determined by surface plasmon resonance, resulting in a dissociation constant Kd = 1.8 × 10 4 M.  相似文献   

19.
Bacillus thuringiensis (Bt) Cry8D insecticidal proteins are unique among Cry8 family proteins in terms of its insecticidal activity against adult Scarab beetles, such as Japanese beetle (Popillia japonica Newman). From the sequence homology with other Bt Cry proteins especially those active against beetles, such as Cry3Aa whose 3D structure is available, the structure of the Cry8D protein has been predicted to be a typical three-domain Cry protein type. In addition, the activation process of Cry8D in gut juice of susceptible insects is presumed to be similar to that of Cry3A (Yamaguchi et al., 2008). In this study, the activation process of Cry8Da in insect gut juice was closely examined. Japanese beetle gut juice proteases digested the 130 kDa Cry8Da protein to produce a 64 kDa protein. This 64 kDa protein was active against both adult and larval Japanese beetle and considered to be an activated toxin. N-terminal sequencing of this 64 kDa protein revealed that the Cry8Da leader sequence consisting of 63 amino acid residues from M1 to F63 was removed. As in the case of Cry3Aa, the proteases further digested the 64 kDa protein to two 8 kDa and 54 kDa fragments. N-terminal amino acid analysis of these smaller fragments indicated that the proteases digested the loop between Alpha Helix (Alpha for short) 3 and Alpha 4. This means that the 8 kDa fragment consists of Alpha 1-3 of Domain I and that the 54 kDa fragment contains the remaining Domain I and full Domain II and Domain III. Size exclusion chromatography and anion exchange chromatography could not separate these 64, 54 and 8 kDa proteins suggesting that the 54 kDa and 8 kDa fragments are still forming the toxin complex equivalent to the 64 kDa protein by size and ionic charge. The sequencing and chromatography results suggest that the gut juice proteases merely nicked the loop between Alpha 3 and Alpha 4. This nicking process appeared to be essential for receptor binding of the Cry8Da toxin. BBMV binding assay revealed that the Cry8Da toxin bound to BBMV preparations from both adult and larval Japanese beetle only after the loop was nicked. Only the 54 kDa fragment bound to the BBMV preparations but not the 64 kDa protein. Ligand blot showed that the protease activated Cry8Da toxin, presumably the 54 kDa fragment, bound to specific BBMV proteins, one or more of those would be receptor(s). The sizes and binding affinities of these Cry8Da-bound proteins of Japanese beetle BBMV differed between larvae and adults.  相似文献   

20.
The physicochemical properties of the pectins extracted from Akebia trifoliata var. australis peel with hydrochloric acid and citric acid, namely HEP and CEP, were evaluated as compared with citrus pectin (CP). X-ray diffraction confirmed that CP had more well defined crystal than HEP and CEP. The DE values of HEP, CEP and CP were 59.46%, 76.64% and 71.03%, respectively. CP exhibited the highest viscosity-average molecular weight of 64,848 Da, followed by HEP (45,353 Da) and CEP (28,877 Da). In general, the emulsion activity of HEP and CEP increased as oil concentration was increased, while HEP showed the strongest emulsion activity among the three pectins. Textural analysis demonstrated that the gelling properties of three pectins decreased with increase in pH, and CP displayed superiority in hardness (9.03 g), while CEP was the poorest (1.45 g). All results suggested that A. trifoliata var. australis had the potential in producing pectin for commercial food industry application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号