首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we used liver mitochondrial and microsomal fraction from rats pretreated with seaweed Ulva lactuca polysaccharide extract (ULP - 200 mg/kg body weight, daily for 21 days, oral gavage) on D-Galactosamine (500 mg/kg body weight, intraperitoneally) challenge. Effectiveness of ULP was determined based on functional status of trichloro acetic acid (TCA), urea cycle, and microsomal enzymes. The composition of sulfate polysaccharide content such as total sugars, sulfate and uronic acid were examined. In addition the fine ultra structural changes were examined using electron microscopy (EM). We observed significant (p < 0.001) mitochondrial and microsomal abnormalities during liver damage by D-Galactosamine, consequently altering enzymes of energy metabolism. Electron microscopy of D-Galactosamine intoxicated rat liver tissue revealed the swelling and loss of mitochondrial cristae. Conversely the rats pretreated with ULP against D-Galactosamine challenge prevented (p < 0.05) the significant abnormality of TCA, microsomal enzymes and severity of mitochondria as observed in EM study in rats injected with D-Galactosamine alone. However no effective prevention was observed in urea cycle enzymes among D-Galactosamine and treatment group rats. These results showed the effectiveness of ULP in stabilizing the functional status of mitochondrial and microsomal membrane which might be due to the presence of sulfated polysaccharide that could prevented the oxidative stress induced by D-Galactosamine intoxication.  相似文献   

2.
Although Lepomis species are abundant in a wide variety of habitats throughout North America and could serve as potentially valuable biomonitoring tools, few studies have examined the induction of pollutant biomarkers in this genus. We hypothesized that the induction of cytochrome P-450 1A (CYP1A), a sensitive and widely used indicator of response to aquatic contaminants, would serve as an effective biomarker of organic pollutant exposure in Lepomis species. We examined the response of CYP1A and two of the major pollutant-responsive phase II enzymes, glutathione S-transferase (GST), and uridine diphosphate glucuronyltransferase (UDPGT), in Lepomis exposed to organic pollutants under laboratory and field conditions. Two Lepomis species (longear sunfish, Lepomis megalottis and bluegill, Lepomis macrochirus) were exposed in the laboratory via intraperitoneal injection to corn oil (vehicle), benzo(a)pyrene (BaP) (10 and 50 mg/kg), a polynuclear aromatic hydrocarbon (PAH) or 3,4,3′,4′-tetrachlorobiphenyl (PCB 77) (0.1 and 1.0 mg/kg), a dioxin-like planar halogenated aromatic hydrocarbon (HAH), and sacrificed 2 (BaP) or 7 (corn oil, PCB77) days later. Lepomis hepatic CYP1A exhibited differential sensitivity to these two classes of environmental contaminants. CYP1A activity was weakly induced in bluegill exposed to 1.0 mg/kg PCB 77 (3 fold induction over controls) but strongly induced in both bluegill and longear sunfish exposed to 50 mg/kg BaP (37 and 15 fold induction over controls, respectively). In contrast, hepatic GST activity in both species remained unchanged following the treatment with either compound and hepatic UDPGT activity, which was assessed only in BaP-treated longear sunfish, was unaffected by that chemical, indicating these phase II enzymes may not be sensitive pollutant biomarkers in this genus. Further, longear sunfish collected from a PCB contaminated site displayed relatively low levels of CYP1A activity despite PCB body burdens associated with strong induction of CYP1A activity in other fish species. The strong induction of CYP1A by BaP with much weaker CYP1A response to PCB indicates that CYP1A in Lepomis sp. could be an excellent biomarker for PAH pollution, but may not be a reliable indicator of site contamination by halogenated hydrocarbons. We conclude that Lepomis species provide a useful model for examining the regulation and potential consequences of differential pollutant sensitivity, but that CYP1A in these species should be used with caution as an indicator of halogenated contaminants.  相似文献   

3.
4.
We report that polycyclic aromatic hydrocarbon (PAH)-inducible CYP1B1 is targeted to mitochondria by sequence-specific cleavage at the N terminus by a cytosolic Ser protease (polyserase 1) to activate the cryptic internal signal. Site-directed mutagenesis, COS-7 cell transfection, and in vitro import studies in isolated mitochondria showed that a positively charged domain at residues 41–48 of human CYP1B1 is part of the mitochondrial (mt) import signal. Ala scanning mutations showed that the Ser protease cleavage site resides between residues 37 and 41 of human CYP1B1. Benzo[a]pyrene (BaP) treatment induced oxidative stress, mitochondrial respiratory defects, and mtDNA damage that was attenuated by a CYP1B1-specific inhibitor, 2,3,4,5-tetramethoxystilbene. In support, the mitochondrial CYP1B1 supported by mitochondrial ferredoxin (adrenodoxin) and ferredoxin reductase showed high aryl hydrocarbon hydroxylase activity. Administration of benzo[a]pyrene or 2,3,7,8-tetrachlorodibenzodioxin induced similar mitochondrial functional abnormalities and oxidative stress in the lungs of wild-type mice and Cyp1a1/1a2-null mice, but the effects were markedly blunted in Cyp1b1-null mice. These results confirm a role for CYP1B1 in inducing PAH-mediated mitochondrial dysfunction. The role of mitochondrial CYP1B1 was assessed using A549 lung epithelial cells stably expressing shRNA against NADPH-cytochrome P450 oxidoreductase or mitochondrial adrenodoxin. Our results not only show conservation of the endoprotease cleavage mechanism for mitochondrial import of family 1 CYPs but also reveal a direct role for mitochondrial CYP1B1 in PAH-mediated oxidative and chemical damage to mitochondria.  相似文献   

5.
A polyphenolic mixture derived from sesame-seed perisperm (SSP) strongly reduced the mutagenicity of hydrogen peroxide (H2O2), sodium azide (NaN3), and benzo[a]pyrene (BaP) in strains TA100 and/or TA98 of Salmonella typhimurium. It exhibited desmutagenic activity against H2O2, BaP in TA98 and/or TA100 and biomutagenic activity (apparently by affecting the DNA-repair system) against NaN3 in strain TA100. According to in vitro experiments the polyphenolic mixture inhibited the activity of the CYP1A1 (EROD) enzyme responsible for the activation of BaP in the Ames’ test, as well as that of the cytosolic enzyme GST.A cytosolic fraction from liver of male Wistar rats treated with either 20% SSP in the food, or 3 mg or 6 mg of polyphenolic mixture/20 g food/day for a time period of 8 weeks reduced the mutagenic potential of BaP in strains TA100 and TA98, with the cytosolic fraction from rats treated with SSP causing the strongest reduction. Furthermore, a microsomal fraction from the 20% SSP-treated rats inhibited the mutagenicity of BaP in strains TA100 (26.3%) and TA98 (23%). In contrast, a microsomal fraction from rats treated with 3 mg of polyphenolic mixture stimulated the mutagenicity of BaP in TA100 but reduced it in TA98, while for the microsomal fraction from rats treated with 6 mg of polyphenolic mixture, these effects on TA100 and TA98 were reversed.  相似文献   

6.
We studied the decolorization of malachite green (MG) by the fungus Cunninghamella elegans. The mitochondrial activity for MG reduction was increased with a simultaneous increase of a 9-kDa protein, called CeCyt. The presence of cytochrome c in CeCyt protein was determined by optical absorbance spectroscopy with an extinction coefficient (E550-535) of 19.7 ± 6.3 mM−1 cm−1 and reduction potential of + 261 mV. When purified CeCyt was added into the mitochondria, the specific activity of CeCyt reached 440 ± 122 μmol min−1 mg−1 protein. The inhibition of MG reduction by stigmatellin, but not by antimycin A, indicated a possible linkage of CeCyt activity to the Qo site of the bc1 complex. The RT-PCR results showed tight regulation of the cecyt gene expression by reactive oxygen species. We suggest that CeCyt acts as a protein reductant for MG under oxidative stress in a stationary or secondary growth stage of this fungus.  相似文献   

7.
Endogenous nitrosation due to chronic inflammation is enhanced in opisthorchiasis and plays a crucial role in the development of cholangiocarcinoma (CCA). Hepatic cytochrome P450 (CYP) family enzymes, especially CYP2A6 and CYP2E1, are involved in the metabolism of procarcinogens; these two enzymes metabolize endogenous nitrosamines to carcinogenic N-dimethylnitrosamine (NDMA). CYP2A6 activity is increased in patients infected with Opisthorchis viverrini. Our aim was to determine whether the expression and function of CYP2A6 and 2E1 in the livers of patients with O. viverrini-associated cholangiocarcinoma (CCA) was altered compared to livers without CCA. Livers of CCA patients (n = 13 cases) showed increased enzyme activities, protein and mRNA levels of CYP2A6 whereas the enzyme activity and protein levels of CYP2E1 were markedly decreased (P < 0.05). CYP2E1 mRNA levels were not altered. Large numbers of inflammatory cells and increased iNOS expression was found in areas adjacent to the tumor. The data provide evidence to support the concept that enhanced CYP2A6 activity and diminished CYP2E1 activity probably involve to the progression of CCA.  相似文献   

8.
Fungi, particularly the white rot basidiomycetes, have an extraordinary capability to degrade and/or mineralize (to CO2) the recalcitrant fused-ring high molecular weight (?4 aromatic-rings) polycyclic aromatic hydrocarbons (HMW PAHs). Despite over 30 years of research demonstrating involvement of P450 monooxygenation reactions in fungal metabolism of HMW PAHs, specific P450 monooxygenases responsible for oxidation of these compounds are not yet known. Here we report the first comprehensive identification and functional characterization of P450 monooxygenases capable of oxidizing different ring-size PAHs in the model white rot fungus Phanerochaete chrysosporium using a successful genome-to-function strategy. In a genome-wide P450 microarray screen, we identified six PAH-responsive P450 genes (Pc-pah1-Pc-pah6) inducible by PAHs of varying ring size, namely naphthalene, phenanthrene, pyrene, and benzo(a)pyrene (BaP). Using a co-expression strategy, cDNAs of the six Pc-Pah P450s were cloned and expressed in Pichia pastoris in conjunction with the homologous P450 oxidoreductase (Pc-POR). Each of the six recombinant P450 monooxygenases showed PAH-oxidizing activity albeit with varying substrate specificity towards PAHs (3-5 rings). All six P450s oxidized pyrene (4-ring) into two monohydroxylated products. Pc-Pah1 and Pc-Pah3 oxidized BaP (5-ring) to 3-hydroxyBaP whereas Pc-Pah4 and Pc-Pah6 oxidized phenanthrene (3-ring) to 3-, 4-, and 9-phenanthrol. These PAH-oxidizing P450s (493-547 aa) are structurally diverse and novel considering their low overall homology (12-23%) to mammalian counterparts. To our knowledge, this is the first report on specific fungal P450 monooxygenases with catalytic activity toward environmentally persistent and highly toxic HMW PAHs.  相似文献   

9.
These experiments test whether respiration can be predicted better from biomass or from potential respiration, a measurement of the mitochondrial and microsomal respiratory electron transport systems. For nearly a century Kleiber's law or a similar precursor have argued the importance of biomass in predicting respiration. In the last decade, a version of the Metabolic Theory of Ecology has elaborated on Kleiber's Law adding emphasis to the importance of biomass in predicting respiration. We argue that Kleiber's law works because biomass packages mitochondria and microsomal electron transport complexes. On a scale of five orders of magnitude we have shown previously that potential respiration predicts respiration as well as biomass in marine zooplankton. Here, using cultures of the branchiopod, Artemia salina and on a scale of less than 2 orders of magnitude, we investigated the power of biomass and potential respiration in predicting respiration. We measured biomass, respiration and potential respiration in Artemia grown in different ways and found that potential respiration (Ф) could predict respiration (R), both in µlO2 h1 (R = 0.924Φ + 0.062, r2 = 0.976), but biomass (as mg dry mass) could not (R = 27.02DM + 8.857, r2 = 0.128). Furthermore the R/Ф ratio appeared independent of age and differences in the food source.  相似文献   

10.
11.
12.
13.
In this communication, we introduce a novel biomarker of aquatic contamination based on the xenobiotic-induced response of the hepatic coenzyme Q (CoQ) redox balance of fishes to polycyclic aromatic hydrocarbons (PAHs). The method is demonstrated by comparing changes in the liver CoQ redox balance with that measured using the CYP1A-based, 7-ethoxyresofurin-O-deethylase activity assay, on administration of benzo[a]pyrene (BaP) and β-naphthoflavone (BNF) to Barramundi (Lates calcarifer). Both assays showed comparable dose-dependent effects in fish treated with BaP or BNF. Perturbation in the constitutive hepatic CoQ redox balance of fishes may thus provide a simple biomarker of aquatic PAH contamination.  相似文献   

14.
The human cytochrome P450 (CYP) enzymes play a major role in the metabolism of endobiotics and numerous xenobiotics including drugs. Therefore it is the standard procedure to test new drug candidates for interactions with CYP enzymes during the preclinical development phase. The purpose of this study was to determine in vitro CYP inhibition potencies of a set of isoquinoline alkaloids to gain insight into interactions of novel chemical structures with CYP enzymes. These alkaloids (n = 36) consist of compounds isolated from the Papaveraceae family (n = 20), synthetic analogs (n = 15), and one commercial compound. Their inhibitory activity was determined towards all principal human drug metabolizing CYP enzymes: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4. All alkaloids were assayed in vitro in a 96-well plate format using pro-fluorescent probe substrates and recombinant human CYP enzymes. Many of these alkaloids inhibited the CYP3A4 form, with 30/36 alkaloids inhibiting CYP3A4 with at least moderate potency (IC50 < 10 μM) and 15/36 inhibiting CYP3A4 potently (IC50 < 1 μM). Among them corydine, parfumine and 8-methyl-2,3,10,11-tetraethoxyberbine were potent and selective inhibitors for CYP3A4. CYP2D6 was inhibited with at least moderate potency by 26/34 alkaloids. CYP2C19 was inhibited by 15/36 alkaloids at least moderate potently, whereas CYP1A2, CYP2B6, CYP2C8, and CYP2C9 were inhibited to a lesser degree. CYP2A6 was not significantly inhibited by any of the alkaloids. The results provide initial structure-activity information about the interaction of isoquinoline alkaloids with major human xenobiotic-metabolizing CYP enzymes, and illustrate potential novel structures as CYP form-selective inhibitors.  相似文献   

15.
Several P450 enzymes localized in the endoplasmic reticulum and thought to be involved primarily in xenobiotic metabolism, including mouse and rat CYP1A1 and mouse CYP1A2, have also been found to translocate to mitochondria. We report here that the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces enzymatically active CYP1A4/1A5, the avian orthologs of mammalian CYP1A1/1A2, in chick embryo liver mitochondria as well as in microsomes. P450 proteins and activity levels (CYP1A4-dependent 7-ethoxyresorufin-O-deethylase and CYP1A5-dependent arachidonic acid epoxygenation) in mitochondria were 23-40% of those in microsomes. DHET formation by mitochondria was twice that of microsomes and was attributable to a mitochondrial soluble epoxide hydrolase as confirmed by Western blotting with antiEPHX2, conversion by mitochondria of pure 11,12 and 14,15-EET to the corresponding DHETs and inhibition of DHET formation by the soluble epoxide hydrolase inhibitor, 12(-3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). TCDD also suppressed formation of mitochondrial and microsomal 20-HETE. The findings newly identify mitochondria as a site of P450-dependent arachidonic acid metabolism and as a potential target for TCDD effects. They also demonstrate that mitochondria contain soluble epoxide hydrolase and underscore a role for CYP1A in endobiotic metabolism.  相似文献   

16.
CYP1A1 and CYP1A2 enzymes metabolize polycyclic aromatic hydrocarbons (PAHs) to the reactive oxyderivatives. PAHs can induce the activity of both enzymes, which increases its conversion and enhances risk of carcinogenesis. Thus, the inhibition of CYP enzymes is recognized as a cancer chemoprevention strategy. A well‐known group of chemopreventive agents is isothiocyanates, which occur naturally in Brassica vegetables. In this paper, a naturally occurring sulforaphane and its two synthetic analogues isothiocyanate‐2‐oxohexyl and alyssin were investigated. The aim of the study was to determine whether the differences in the isothiocyanate structure change its ability to inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene in HepG2 and Mcf7 cells. Also a mechanistic study was performed including isothiocyanates' influence on CYP1A1 and CYP1A2 catalytic activity, enzymatic protein level, and AhR translocation. It was shown that both enzymes were significantly induced by benzo[a]pyrene, and isothiocyanates were capable of decreasing the induced activity. The inhibitory properties depend on the types of isothiocyanate and enzyme. In general, CYP1A2 was altered in the more meaningful way than CYP1A1 by isothiocyanates. Sulforaphane exhibited weak inhibitory properties, whereas both analogues were capable of inhibiting BaP‐induced activity with the similar efficacy. The mechanistic study revealed that analogues decreased the CYP1A2 activity via the protein‐level reduction and CYP1A1 directly. The results indicate that isothiocyanates can be considered as potent chemopreventive substances and the change in the sulforaphane structure increases its chemopreventive potency. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:18–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20259  相似文献   

17.

Background

Calreticulin (CRT), a Ca2+-binding chaperone of the endoplasmic reticulum, can also be found in several other locations including the cytosol, nucleus, secretory granules, the outer side of the plasma membrane, and the extracellular matrix. Whether CRT is localized at mitochondria of cardiomyocytes and whether such localization is affected under DCM are still unclear.

Methods and results

The DCM model was generated in rats by the daily oral administration of furazolidone for thirty weeks. Echocardiographic and hemodynamic studies demonstrated enlarged left ventricular dimensions and reduced systolic and diastolic function in DCM rats. Immuno-electron microscopy and Western blot showed that CRT was present in cardiomyocyte mitochondria and the mitochondrial content of CRT was increased in DCM hearts (< 0.05). Morphometric analysis showed notable myocardial apoptosis and mitochondrial swelling with fractured or dissolved cristae in the DCM hearts. Compared with the control group, the mitochondrial membrane potential level of the freshly isolated cardiac mitochondria and the enzyme activities of cytochrome c oxidase and succinate dehydrogenase in the model group were significantly decreased (< 0.05), and the myocardial apoptosis index and the caspase activities of caspase-9 and caspase-3 were significantly increased (< 0.05). Pearson linear correlation analysis showed that the mitochondrial content of CRT had negative correlations with the mitochondrial function, and a positive correlation with myocardial apoptosis index (< 0.001). The protein expression level of cytochrome c and the phosphorylation activity of STAT3 in the mitochondrial fraction were significantly decreased in the model group compared with the control group (< 0.05).

Conclusions

These data demonstrate that CRT is localized at cardiomyocyte mitochondria and its mitochondrial content is increased in DCM hearts.  相似文献   

18.
Lee WY  Zhou X  Or PM  Kwan YW  Yeung JH 《Phytomedicine》2012,19(2):169-176
This study investigated the effects of Danshen and its active ingredients on the protein expression and enzymatic activity of CYP1A2 in primary rat hepatocytes. The ethanolic extract of Danshen roots (containing mainly tanshinones) inhibited CYP1A2-catalyzed phenacetin O-deethylation (IC50 = 24.6 μg/ml) in primary rat hepatocytes while the water extract containing mainly salvianolic acid B and danshenshu had no effect. Individual tanshinones such as cryptotanshinone, dihydrotanshinone, tanshinone IIA inhibited the CYP1A2-mediated metabolism with IC50 values at 12.9, 17.4 and 31.9 μM, respectively. After 4-day treatment of the rat hepatocytes, the ethanolic extract of Danshen and tanshinone I increased rat CYP1A2 activity by 6.8- and 5.2-fold, respectively, with a concomitant up-regulation of CYP1A2 protein level by 13.5- and 6.5-fold, respectively. CYP1A2 induction correlated with the up-regulation of mRNA level of aryl hydrocarbon receptor (AhR), which suggested a positive feedback mechanism of tanshinone I-mediated CYP1A2 induction. A formulated Danshen pill (containing mainly danshensu and salvianolic acid B and the tanshinones) up-regulated CYP1A2 protein expression and enzyme activity, but danshensu and salvianolic acid B, when used individually, did not affect CYP1A2 activity. This study was the first report on the Janus action of the tanshinones on rat CYP1A2 activity.  相似文献   

19.
In the heart of sugar-induced hypertriglyceridemic (HTG) rats, cardiac performance is impaired with glucose as fuel, but not with fatty acids. Accordingly, the glycolytic flux and the transfer of energy diminish in the HTG heart, in comparison to control heart. To further explore the biochemical nature of such alteration in the HTG heart, the components of the non-glycolytic energy systems involved were evaluated. Total creatine kinase (CK) activity in the myocardial tissue was depressed by 30% in the HTG heart whereas the activity of the mitochondrial CK (mitCK) isoenzyme fraction that is functionally associated with oxidative phosphorylation decreased in isolated HTG heart mitochondria by 45%. Adenylate kinase (AK) was 20% lower in the HTG heart. In contrast, respiratory rates with 2-oxoglutarate (2-OG) and pyruvate/malate (pyr) were significantly higher in HTG heart mitochondria than in control mitochondria. 2-OG dehydrogenase activity was also higher in HTG mitochondria. Respiration with succinate was similar in both groups. Content of cytochromes b, c + c1 and a + a3, and cytochrome c oxidase activity, were also similar in the two kinds of mitochondria. A larger content of saturated and monounsaturated fatty acids was found in the HTG mitochondrial membranes with no changes in phospholipids composition or cholesterol content. Mitochondrial membranes from HTG hearts were more rigid, which correlated with the generation of higher membrane potentials. As the mitochondrial function was preserved or even enhanced in the HTG heart, these results indicated that deficiency in energy transfer was associated with impairment in mitCK and AK. This situation brought about uncoupling between the site of ATP production and the site of ATP consumption (contractile machinery), in spite of compensatory increase in mitochondrial oxidative capacity and membrane potential generation.  相似文献   

20.
The interest of simultaneously combining chemical (Fenton’s reaction) and biological treatments for the degradation of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) has been studied in laboratory tests. An optimal concentration of 1.5 × 10−3 M H2O2 as Fenton’s reagent was firstly determined as being compatible with the growth of Fusarium solani, the Deuteromycete fungus used in the biodegradation process. For the enhancement of BaP solubilisation, cyclodextrins were also used in the performed tests. The best degradation performance was achieved through the use of 5 × 10−3 M hydroxypropyl-β-cyclodextrin (HPBCD) in comparison with randomly methylated-β-cyclodextrin (RAMEB). When Fenton’s treatment was combined with biodegradation, a beneficial effect on BaP degradation (25%) was obtained in comparison with biodegradation alone (8%) or with chemical oxidation alone (16%) in the presence of HPBCD for 12 days of incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号