首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[2',2'-(2)H(2)]-indole-3-acetic acid ([2',2'-(2)H(2)]IAA) was prepared in an easy and efficient manner involving base-catalyzed hydrogen/deuterium exchange. 1-O-([2',2'-(2)H(2)]-indole-3-acetyl)-beta-D-glucopyranose, [2',2'-(2)H(2)]-2-oxoindole-3-acetic acid, and 1-O-([2',2'-(2)H(2)]-2-oxoindole-3-acetyl)-beta-D-glucopyranose were also successfully synthesized from deuterated IAA, and effectively utilized as internal standards in the quantitative analysis of IAA and its metabolites in Arabidopsis thaliana by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The use of this technique shows that these metabolites were accumulated in the roots of Arabidopsis seedlings. Dynamic changes in the metabolites of IAA were observed in response to exogenous IAA, revealing that each metabolic action was regulated differently to contribute to the IAA homeostasis in Arabidopsis.  相似文献   

2.
Kai K  Horita J  Wakasa K  Miyagawa H 《Phytochemistry》2007,68(12):1651-1663
Three metabolites of indole-3-acetic acid (IAA), N-(6-hydroxyindol-3-ylacetyl)-phenylalanine (6-OH-IAA-Phe), N-(6-hydroxyindol-3-ylacetyl)-valine (6-OH-IAA-Val), and 1-O-(2-oxoindol-3-ylacetyl)-beta-d-glucopyranose (OxIAA-Glc), were found by a liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS)-based search for oxidative IAA metabolites during the vegetative growth of Arabidopsis. Their structures were confirmed by making a comparison of chromatographic characteristics and mass spectra between naturally occurring compounds and synthetic standards. An incorporation study using deuterium-labeled compounds showed that 6-OH-IAA-Phe and 6-OH-IAA-Val were biosynthesized from IAA-Phe and IAA-Val, respectively, which strongly suggested the formation of these amino acid conjugates of IAA in plants. Both 6-OH-IAA-Phe and 6-OH-IAA-Val were inactive as auxins, as indicated by no significant root growth inhibition in Arabidopsis. Quantitative analysis demonstrated that OxIAA-Glc was present in the largest amount among the metabolites of IAA in Arabidopsis, suggesting that the conversion into OxIAA-Glc represents the main metabolic process regarding IAA in Arabidopsis.  相似文献   

3.
[2′,2′-2H2]-indole-3-acetic acid ([2′,2′-2H2]IAA) was prepared in an easy and efficient manner involving base-catalyzed hydrogen/deuterium exchange. 1-O-([2′,2′-2H2]-indole-3-acetyl)-β-D-glucopyranose, [2′,2′-2H2]-2-oxoindole-3-acetic acid, and 1-O-([2′,2′-2H2]-2-oxoindole-3-acetyl)-β-D-glucopyranose were also successfully synthesized from deuterated IAA, and effectively utilized as internal standards in the quantitative analysis of IAA and its metabolites in Arabidopsis thaliana by using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The use of this technique shows that these metabolites were accumulated in the roots of Arabidopsis seedlings. Dynamic changes in the metabolites of IAA were observed in response to exogenous IAA, revealing that each metabolic action was regulated differently to contribute to the IAA homeostasis in Arabidopsis.  相似文献   

4.
The accumulation of conjugates of indole-3-acetic acid (IAA) in Arabidopsis thaliana was studied by incubating tissues with high concentrations of exogenous IAA, followed by reverse phase HPLC analysis of the extracts. Using fluorescence detection, indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose were observed and quantitated in extracts of tissue after 24 h incubation with 500 μ M IAA. In addition, a new metabolite was detected and positively identified as indole-3-acetyl-glutamine by fast atom bombardment mass spectrometry, exact mass measurement, and tandem mass spectrometry in comparison with a synthetic standard. The amounts of individual conjugates formed differed between leaves, shoot axes and roots. In all three tissues, indole-3-acetyl-aspartate was the most abundant conjugate, the highest level being observed in roots. Highest levels of indole-3-acetyl-glutamine were observed in leaves, where it was the second most abundant conjugate and comprised approximately 12% of the fluorescent metabolites. Accumulation of the three amide conjugates was dramatically inhibited by cycloheximide, whereas accumulation of indole-3-acetyl-glucose was little affected. Based on these data, a screen for Arabidopsis mutants altered in the IAA-inducible system for auxin conjugate formation was initiated. The first mutant to be isolated and characterized produces more indole-3-acetyl-glutamine and less indole-3-acetyl-aspartate than wild-type, and is allelic to an existing class of photorespiration mutants ( gluS ) deficient in chloroplastic glutamate synthase.  相似文献   

5.
Kai K  Wakasa K  Miyagawa H 《Phytochemistry》2007,68(20):2512-2522
A search was made for conjugates of indole-3-acetic acid (IAA) in rice (Oryza sativa) using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in order to elucidate unknown metabolic pathways for IAA. N-beta-d-Glucopyranosyl indole-3-acetic acid (IAA-N-Glc) was found in an alkaline hydrolysate of rice extract. A quantitative analysis of 3-week-old rice demonstrated that the total amount of IAA-N-Glc was equal to that of IAA. A LC-ESI-MS/MS-based analysis established that the major part of IAA-N-Glc was present as bound forms with aspartate and glutamate. Their levels were in good agreement with the total amount of IAA-N-Glc during the vegetative growth of rice. Further detailed analysis showed that both conjugates highly accumulated in the root. The free form of IAA-N-Glc accounted for 60% of the total in seeds but could not be detected in the vegetative tissue. An incorporation study using deuterium-labeled compounds showed that the amino acid conjugates of IAA-N-Glc were biosynthesized from IAA-amino acids. IAA-N-Glc and/or its conjugates were also found in extracts of Arabidopsis, Lotus japonicus, and maize, suggesting that N-glucosylation of indole can be the common metabolic pathway of IAA in plants.  相似文献   

6.
Amide-linked indole-3-acetic acid (IAA) conjugates constitute approximately 90% of the IAA pool in the dicot Arabidopsis, whereas ester-linked conjugates and free IAA account for approximately 10% and 1%, respectively when whole seedlings are measured. We show here that IAA-aspartate Asp, IAA-glutamate (Glu), and IAA-glucose (Glc) are present at low levels in Arabidopsis. Nine-day-old wild-type Arabidopsis seedlings yielded 17.4 +/- 4.6 ng g(-1) fresh weight IAA-Asp and 3.5 +/- 1.6 ng g(-1) fresh weight IAA-Glu, and IAA-Glc was present at 7 to 17 ng g(-1) fresh weight in 12-d-old wild-type seedlings. Total IAA content in 9-d-old Arabidopsis seedlings was 1, 200 +/- 178 ng g(-1) fresh weight, so these three IAA conjugates together made up only 3% of the conjugate pool throughout the whole plant. We detected less than wild-type levels of IAA-Asp and IAA-Glu (7.8 +/- 0.4 ng g(-1) fresh weight and 1.8 +/- 0.3 ng g(-1) fresh weight, respectively) in an Arabidopsis mutant that accumulates conjugated IAA. Our results are consistent with IAA-Asp, IAA-Glu, and IAA-Glc being either minor, transient, or specifically localized IAA metabolites under normal growth conditions and bring into question the physiological relevance of IAA-Asp accumulation in response to high concentrations of exogenous IAA.  相似文献   

7.
Riov J  Bangerth F 《Plant physiology》1992,100(3):1396-1402
High performance liquid chromatography of extracts of tomato (Lycopersicon esculentum Mill.) incubated with a relatively low concentration (4 μm) of [1-14C]indole-3-acetic acid (IAA) revealed the presence of two major polar metabolites. Hydrolysis of the two metabolites with 7 n NaOH yielded the same compound, which had a retention time similar to that of ring-expanded oxindole-3-acetic acid (OxIAA) on high performance liquid chromatography. The identity of the indolic moiety of these conjugates as OxIAA was further confirmed by gas chromatography-mass spectrometry. Chromatography of the two OxIAA conjugates on a calibrated Bio-Gel P-2 column indicated that their molecular weights are about 1200 and 1000. Aspartic acid and glutamic acid were the major amino acids detected in acid hydrolysates of the two conjugates. Increasing the concentration of IAA in the incubation medium resulted in an increase in the formation of indole-3-acetylaspartic acid (IAAsp) with a concomitant decrease in the formation of the two OxIAA conjugates. Feeding experiments with labeled IAAsp and OxIAA showed that IAAsp and not OxIAA is the precursor of these conjugates. The data obtained indicate that exogenous IAA is converted in tomato pericarp tissue to high molecular weight conjugates, presumably peptides, of OxIAA via the oxidation of IAAsp. The oxidation of IAAsp seems to be a rate-limiting step in the formation of these conjugates from exogenous IAA.  相似文献   

8.
Indole-3-butyric acid (IBA) was identified by HPLC and GC-MS as one of the reaction products after incubation of sterile cultures of Arabidopsis thaliana seedlings with labeled indole-3-acetic acid (IAA). This is the first demonstration of IBA biosynthesis in a dicotyledonous plant. After 1 h of incubation most of the IBA was found in the free form, while after longer periods of incubation most of it was detected in conjugated forms. Formation of IBA conjugates was inhibited by the addition of unlabeled IBA. The biosynthesis of IBA and its conjugates was followed throughout the development of the seedlings and at different pH values. All parts of the plant (isolated roots, leaves, shoots and flowers) were able to convert IAA to IBA to the same extent.IAA was more readily transported than IBA in mature Arabidopsis plants. Feeding of labeled phenylacetic acid (PAA) and -naphthylacetic acid (NAA) to Arabidopsis seedlings resulted in a new small peak which was hydrolyzed by 7N NaOH, but the formation of compounds with longer side chains (analogous to IBA) could not be detected.Abbreviations IAA indole-3-acetic acid - IBA indole-3-butyric acid - NAA -naphthylacetic acid - PAA phenylacetic acid  相似文献   

9.
Metabolism of indole-3-acetic acid (IAA) in apical shoots of Populus tremula (L.) x Populus tremuloides (Michx.) was investigated by feeding a mixture of [12C]IAA, [13C6]IAA, and [1[prime]-14C]IAA through the base of the excised stem. HPLC of methanolic plant extracts revealed eight major radiolabeled metabolites after a 24-h incubation period. Comparison between feeds with [5-3H]IAA and [1[prime]-14C]IAA showed that all detectable metabolites were nondecarboxylative products. The purified radiolabeled HPLC fractions were screened by frit-fast atom bombardment liquid chromatography-mass spectrometry for compounds with characteristic fragment pairs originating from the application with 12C and 13C isotopes. Samples of interest were further characterized by gas chromatography-mass spectrometry. Using this procedure, oxindole-3-acetic acid (OxIAA), indole-3-acetyl-N-aspartic acid (IAAsp), oxindole-3-acetyl-N-aspartic acid (OxIAAsp), and ring-hydroxylated oxindole-3-acetic acid were all identified as IAA metabolites. Furthermore, a novel metabolic pathway from IAA via IAAsp and OxIAAsp to OxIAA was established on the basis of refeeding experiments with the different IAA metabolites.  相似文献   

10.
《Phytochemistry》1986,25(11):2457-2461
2,6-Dihydroxyacetophenone and five structurally related compounds were tested for their effects on metabolism of[2-14C]IAA in stem segments of 3-week-old American germander (Teucrium canadense). Pre-treatment of the plants with 2 mM 2,6-dihydroxyacetophenone for 12 hr significantly reduced the formation of two radioactive metabolites, which were tentatively identified as N-(indole-3-acetyl)-L-aspartic acid and N-(indole-3-acetyl)-L-glutamic acid. The chemical pre-treatment also decreased the level of a less polar metabolite chromatographically indistinguishable from oxindole-3-acetic acid, an oxidative product of IAA, and other unidentified metabolites of IAA. Concomitantly, the level of free [2-14C]IAA increased significantly in the treated tissue. 2,4-, 2,5- and 3,4-Dihydroxyacetophenones, as well as 3-bromo-2,6-dihydroxyacetophenone and 2-hydroxy-6-methoxyacetophenone, did not show a similar effect.  相似文献   

11.
A method for quantifying indole-3-acetic acid (IAA) and its conjugates with the six amino acids, Ala, -Asp, -Ile, -Glu, -Phe and -Val, in rice (Oryza sativa) by using high-performance liquid chromatography coupled with electrospray ionization and tandem mass spectrometry (HPLC-ESI-MS/MS) is described. Samples from the rice plant or callus were treated with 80% acetone in water containing 2.5 mM diethyl dithiocarbamate. Each extract was partially purified in C18 cartridge column for solid-phase extraction (SPE) and subjected to HPLC-ESI-MS/MS without converting the product. The detection limit was 3.8 fmol for IAA, and 0.4-2.9 fmol for the IAA amino acid conjugates. The method was applied to the analysis of IAA and its conjugates in rice seedlings, dehulled rice and calli, using 20-100 mg tissue samples.  相似文献   

12.
Auxins are hormones important for numerous processes throughout plant growth and development. Plants use several mechanisms to regulate levels of the auxin indole-3-acetic acid (IAA), including the formation and hydrolysis of amide-linked conjugates that act as storage or inactivation forms of the hormone. Certain members of an Arabidopsis amidohydrolase family hydrolyze these conjugates to free IAA in vitro. We examined amidohydrolase gene expression using northern and promoter-beta-glucuronidase analyses and found overlapping but distinct patterns of expression. To examine the in vivo importance of auxin-conjugate hydrolysis, we generated a triple hydrolase mutant, ilr1 iar3 ill2, which is deficient in three of these hydrolases. We compared root and hypocotyl growth of the single, double, and triple hydrolase mutants on IAA-Ala, IAA-Leu, and IAA-Phe. The hydrolase mutant phenotypic profiles on different conjugates reveal the in vivo activities and relative importance of ILR1, IAR3, and ILL2 in IAA-conjugate hydrolysis. In addition to defective responses to exogenous conjugates, ilr1 iar3 ill2 roots are slightly less responsive to exogenous IAA. The triple mutant also has a shorter hypocotyl and fewer lateral roots than wild type on unsupplemented medium. As suggested by the mutant phenotypes, ilr1 iar3 ill2 imbibed seeds and seedlings have lower IAA levels than wild type and accumulate IAA-Ala and IAA-Leu, conjugates that are substrates of the absent hydrolases. These results indicate that amidohydrolases contribute free IAA to the auxin pool during germination in Arabidopsis.  相似文献   

13.
Plant hormone conjugation: A signal decision   总被引:1,自引:0,他引:1  
Tight regulation of the auxin hormone indole-3-acetic acid (IAA) is crucial for plant development. Newly discovered IAA antagonists are the amide-linked tryptophan conjugates of IAA and jasmonic acid (JA). JA-Trp and IAA-Trp interfered with root gravitropism in Arabidopsis, and inhibited several responses to exogenously supplied IAA. Relatively low concentrations of the inhibitors occurred in Arabidopsis, but Pisum sativum flowers contained over 300 pmole g−1 FW of JA-Trp. DihydroJA was an even more effective inhibitor than JA-Trp, suggesting that Trp conjugates with other JA derivatives may also be functional. JA-Trp and IAA-Trp add to the list of documented bioactive amide hormone conjugates. The only other example is JA-Ile, the recently discovered jasmonate signal. These examples establish that conjugation not only inactivates hormones, but in some cases creates novel compounds that function in hormone signaling.Key words: jasmonic acid, indole-3-acetic acid, auxin, tryptophan, conjugate, plant hormone, signaling, amino acid, antagonistPlants hold an amazing capacity to auto-regulate their growth and respond to a host of environmental challenges. Since the early discovery of the first plant hormone, indole-3-acetic acid (IAA),1 science has progressively unveiled ever more complex, and sometimes surprising, ways that plants manipulate hormones to optimize their growth and thwart their opponents. Until recently, the covalent coupling of hormones to sugars, amino acids and peptides was thought to be merely a way to dispose of excess hormone.2 The amide linkage of IAA to Asp and Glu does indeed result in IAA catabolism, while IAA-Ala and IAA-Leu are inactive stored forms of IAA.3 But the perception that all hormone conjugates are inactive changed abruptly with the discovery that the isoleucine conjugate of jasmonic acid (JA-Ile) is an active hormonal signal.  相似文献   

14.
Both indole-3-acetamide (IAM) and indole-3-acetic acid (IAA)were identified in extracts of the hypocotyls of Japanese cherryby GC/MS. Exogenous IAA and IAM promoted the elongation of segmentsof these hypocotyls and the effect of IAA applied together withIAM was the same as that of IAA alone. (Received July 29, 1992; Accepted October 19, 1992)  相似文献   

15.
The plant hormone indole-3-acetic acid (IAA) is the most abundant natural auxin involved in many aspects of plant development and growth. The IAA levels in plants are modulated by a specific group of amidohydrolases from the peptidase M20D family that release the active hormone from its conjugated storage forms. Here, we describe the X-ray crystal structure of IAA-amino acid hydrolase IAA-leucine resistantlike gene 2 (ILL2) from Arabidopsis thaliana at 2.0 A resolution. ILL2 preferentially hydrolyses the auxin-amino acid conjugate N-(indol-3-acetyl)-alanine. The overall structure of ILL2 is reminiscent of dinuclear metallopeptidases from the M20 peptidase family. The structure consists of two domains, a larger catalytic domain with three-layer alpha beta alpha sandwich architecture and aminopeptidase topology and a smaller satellite domain with two-layer alphabeta-sandwich architecture and alpha-beta-plaits topology. The metal-coordinating residues in the active site of ILL2 include a conserved cysteine that clearly distinguishes this protein from previously structurally characterized members of the M20 peptidase family. Modeling of N-(indol-3-acetyl)-alanine into the active site of ILL2 suggests that Leu175 serves as a key determinant for the amino acid side-chain specificity of this enzyme. Furthermore, a hydrophobic pocket nearby the catalytic dimetal center likely recognizes the indolyl moiety of the substrate. Finally, the active site of ILL2 harbors an absolutely conserved glutamate (Glu172), which is well positioned to act as a general acid-base residue. Overall, the structure of ILL2 suggests that this enzyme likely uses a catalytic mechanism that follows the paradigm established for the other enzymes of the M20 peptidase family.  相似文献   

16.
Isolated, 2.5-mm-long coleoptile tips of Zea mays L. cv. Anjou 210 were analyzed for diffusible and tissue-extractable indole-3-acetic acid (IAA) in comparison with the level of base-labile conjugates at various times after excision. The results indicate that base-labile conjugates of IAA do not serve as major sources of free IAA in maize coleoptile tips.Abbreviations IAA indole-3-acetic acid - TLC thin-layer chromatography  相似文献   

17.
Amide-linked conjugates of indole-3-acetic acid (IAA) are putative storage or inactivation forms of the growth hormone auxin. Here, we describe the Arabidopsis iar3 mutant that displays reduced sensitivity to IAA-Ala. IAR3 is a member of a family of Arabidopsis genes related to the previously isolated ILR1 gene, which encodes an IAA-amino acid hydrolase selective for IAA-Leu and IAA-Phe. IAR3 and the very similar ILL5 gene are closely linked on chromosome 1 and comprise a subfamily of the six Arabidopsis IAA-conjugate hydrolases. The purified IAR3 enzyme hydrolyzes IAA-Ala in vitro. iar 3 ilr1 double mutants are more resistant than either single mutant to IAA-amino acid conjugates, and plants overexpressing IAR3 or ILR1 are more sensitive than is the wild type to certain IAA-amino acid conjugates, reflecting the overlapping substrate specificities of the corresponding enzymes. The IAR3 gene is expressed most strongly in roots, stems, and flowers, suggesting roles for IAA-conjugate hydrolysis in those tissues.  相似文献   

18.
Two-week-old dwarf peas (Pisum sativum cv Little Marvel) were sprayed with gibberellic acid (GA3), and after 3 or 4 days the upper stem and young leaf samples were analyzed for indole-3-acetic acid (IAA) and indole-3-acetyl aspartic acid by an isotope dilution high performance liquid chromatography method. GA3 increased IAA levels as much as 8-fold and decreased indole-3-acetyl aspartic acid levels.  相似文献   

19.
The plant tryptophan (Trp) biosynthetic pathway produces many secondary metabolites with diverse functions.Indole-3-acetic acid (IAA),proposed as a derivative from Trp or its precursors,plays an essential role in plant growth and development.Although the Trp-dependant and Trp-independent IAA biosynthetic pathways have been proposed,the enzymes,reactions and regulatory mechanisms are largely unknown.In Arabidopsis,indole-3-glycerol phosphate (IGP) is suggested to serve as a branchpoint component in the Trp-independent IAA biosynthesis.To address whether other enzymes in addition to Trp synthase α(TSA1) catalyze IGP cleavage,we identified and characterized an indole synthase (INS) gene,a homolog of TSA1 in Arabidopsis.INS exhibits different subcellular localization from TSA1 owing to the lack of chloroplast transit peptide (cTP).In silico data show that the expression levels of INS and TSA1 in all examined organs are quite different.Histochemical staining of INS promoter-GUS transgenic lines indicates that INS is expressed in vascular tissue of cotyledons,hypocotyls,roots and rosette leaves as well as in flowers and siliques.INS is capable of complementing the Trp auxotrophy of Escherichia coil △trpA strain,which is defective in Trp synthesis due to the deletion of TSA.This implies that INS catalyzes the conversion of IGP to indole and may be involved in the biosynthesis of Trp-independent IAA or other secondary metabolites in Arabidopsis.  相似文献   

20.
With the aim of investigating the mechanisms that maintain auxin homeostasis in plants, we have monitored the net uptake and metabolism of exogenously supplied indole-3-acetic acid (IAA) and naphthalene-1-acetic acid (NAA) in seedlings of wild type and the IAA-overproducing mutant sur1 of Arabidopsis thaliana . Tritiated IAA and NAA entered the seedling tissues within minutes and were mostly accumulated as metabolites, probably amino acid and sugar conjugates. The mutant seedlings were marked by a strong increase of [3H]IAA metabolism and a reduction of the accumulation levels of both free [3H]IAA and [3H]NAA. The same characteristics were observed in wild-type seedlings grown on 5 μ M picloram. We measured [3H]NAA uptake in the presence of high concentrations of unlabeled NAA or the auxin efflux carrier inhibitor naphthylphthalamic acid (NPA). This abolished the difference in free [3H]NAA accumulation between the mutant or picloram-treated seedlings and wild-type seedlings. These data indicated that active auxin efflux carriers were present in Arabidopsis seedling tissues. Picloram-treated seedlings and seedlings of the IAA-overproducing mutant sur1 displayed increased auxin efflux carrier activity as well as elevated conjugation of IAA. There is previous evidence to suggest that conjugation is a means to remove excess IAA in plant cells. Here, we discuss the possibility of efflux constituting an additional mechanism for regulating free IAA levels in the face of an excess auxin supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号