首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the increasing amount of DNA sequence data available from natural populations, new computational methods are needed to efficiently process raw sequences into formats that are applicable to a variety of analytical methods. One highly successful approach to inferring aspects of demographic history is grounded in coalescent theory. Many of these methods restrict themselves to perfectly tree-like genealogies (i.e. regions with no observed recombination), because theoretical difficulties prevent ready statistical evaluation of recombining regions. However, determining which recombination-filtered dataset to analyze from a larger recombination-rich genomic region is a non-trivial problem. Current applications primarily aim to quantify recombination rates (rather than produce optimal recombination-filtered blocks), require significant manual intervention, and are impractical for multiple genomic datasets in high-throughput, automated research environments. Here, we present a fast, simple and automatable command-line program that extracts optimal recombination-filtered blocks (no four-gamete violations) from recombination-rich genomic re-sequence data. Availability: http://hammerlab.biosci.arizona.edu/software.html.  相似文献   

2.
What should be expected from feature selection in small-sample settings   总被引:1,自引:0,他引:1  
MOTIVATION: High-throughput technologies for rapid measurement of vast numbers of biological variables offer the potential for highly discriminatory diagnosis and prognosis; however, high dimensionality together with small samples creates the need for feature selection, while at the same time making feature-selection algorithms less reliable. Feature selection must typically be carried out from among thousands of gene-expression features and in the context of a small sample (small number of microarrays). Two basic questions arise: (1) Can one expect feature selection to yield a feature set whose error is close to that of an optimal feature set? (2) If a good feature set is not found, should it be expected that good feature sets do not exist? RESULTS: The two questions translate quantitatively into questions concerning conditional expectation. (1) Given the error of an optimal feature set, what is the conditionally expected error of the selected feature set? (2) Given the error of the selected feature set, what is the conditionally expected error of the optimal feature set? We address these questions using three classification rules (linear discriminant analysis, linear support vector machine and k-nearest-neighbor classification) and feature selection via sequential floating forward search and the t-test. We consider three feature-label models and patient data from a study concerning survival prognosis for breast cancer. With regard to the two focus questions, there is similarity across all experiments: (1) One cannot expect to find a feature set whose error is close to optimal, and (2) the inability to find a good feature set should not lead to the conclusion that good feature sets do not exist. In practice, the latter conclusion may be more immediately relevant, since when faced with the common occurrence that a feature set discovered from the data does not give satisfactory results, the experimenter can draw no conclusions regarding the existence or nonexistence of suitable feature sets. AVAILABILITY: http://ee.tamu.edu/~edward/feature_regression/  相似文献   

3.
Avoiding bias in calculations of relative growth rate   总被引:6,自引:0,他引:6  
In classical growth analysis, relative growth rate (RGR) is calculated as RGR = (ln W2 - ln W1)/(t2 - t1), where W1 and W2 are plant dry weights at times t1 and t2. Since RGR is usually calculated using destructive harvests of several individuals, an obvious approach is to substitute W1 and W2 with sample means W1 and W2. Here we demonstrate that this approach yields a biased estimate of RGR whenever the variance of the natural logarithm-transformed plant weight changes through time. This bias increases with an increase in the variance in RGR, in the length of the interval between harvests, or in sample size. The bias can be avoided by using the formula RGR = (ln W2 - ln W1)/(t2 - t1),where ln W1 and ln W2 are the means of the natural logarithm-transformed plant weights.  相似文献   

4.
Numerous Bayesian methods of phenotype prediction and genomic breeding value estimation based on multilocus association models have been proposed. Computationally the methods have been based either on Markov chain Monte Carlo or on faster maximum a posteriori estimation. The demand for more accurate and more efficient estimation has led to the rapid emergence of workable methods, unfortunately at the expense of well-defined principles for Bayesian model building. In this article we go back to the basics and build a Bayesian multilocus association model for quantitative and binary traits with carefully defined hierarchical parameterization of Student's t and Laplace priors. In this treatment we consider alternative model structures, using indicator variables and polygenic terms. We make the most of the conjugate analysis, enabled by the hierarchical formulation of the prior densities, by deriving the fully conditional posterior densities of the parameters and using the acquired known distributions in building fast generalized expectation-maximization estimation algorithms.  相似文献   

5.
Estimating marker effects based on routinely generated phenotypic data of breeding programs is a cost-effective strategy to implement genomic selection. Truncation selection in breeding populations, however, could have a strong impact on the accuracy to predict genomic breeding values. The main objective of our study was to investigate the influence of phenotypic selection on the accuracy and bias of genomic selection. We used experimental data of 788 testcross progenies from an elite maize breeding program. The testcross progenies were evaluated in unreplicated field trials in ten environments and fingerprinted with 857 SNP markers. Random regression best linear unbiased prediction method was used in combination with fivefold cross-validation based on genotypic sampling. We observed a substantial loss in the accuracy to predict genomic breeding values in unidirectional selected populations. In contrast, estimating marker effects based on bidirectional selected populations led to only a marginal decrease in the prediction accuracy of genomic breeding values. We concluded that bidirectional selection is a valuable approach to efficiently implement genomic selection in applied plant breeding programs.  相似文献   

6.

Key message

New methods that incorporate the main and interaction effects of high-dimensional markers and of high-dimensional environmental covariates gave increased prediction accuracy of grain yield in wheat across and within environments.

Abstract

In most agricultural crops the effects of genes on traits are modulated by environmental conditions, leading to genetic by environmental interaction (G × E). Modern genotyping technologies allow characterizing genomes in great detail and modern information systems can generate large volumes of environmental data. In principle, G × E can be accounted for using interactions between markers and environmental covariates (ECs). However, when genotypic and environmental information is high dimensional, modeling all possible interactions explicitly becomes infeasible. In this article we show how to model interactions between high-dimensional sets of markers and ECs using covariance functions. The model presented here consists of (random) reaction norm where the genetic and environmental gradients are described as linear functions of markers and of ECs, respectively. We assessed the proposed method using data from Arvalis, consisting of 139 wheat lines genotyped with 2,395 SNPs and evaluated for grain yield over 8 years and various locations within northern France. A total of 68 ECs, defined based on five phases of the phenology of the crop, were used in the analysis. Interaction terms accounted for a sizable proportion (16 %) of the within-environment yield variance, and the prediction accuracy of models including interaction terms was substantially higher (17–34 %) than that of models based on main effects only. Breeding for target environmental conditions has become a central priority of most breeding programs. Methods, like the one presented here, that can capitalize upon the wealth of genomic and environmental information available, will become increasingly important.  相似文献   

7.
8.
The ultimate goal of functional genomics is to define the function of all the genes in the genome of an organism. A large body of information of the biological roles of genes has been accumulated and aggregated in the past decades of research, both from traditional experiments detailing the role of individual genes and proteins, and from newer experimental strategies that aim to characterize gene function on a genomic scale.It is clear that the goal of functional genomics can only be achieved by integrating information and data sources from the variety of these different experiments. Integration of different data is thus an important challenge for bioinformatics.The integration of different data sources often helps to uncover non-obvious relationships between genes, but there are also two further benefits. First, it is likely that whenever information from multiple independent sources agrees, it should be more valid and reliable. Secondly, by looking at the union of multiple sources, one can cover larger parts of the genome. This is obvious for integrating results from multiple single gene or protein experiments, but also necessary for many of the results from genome-wide experiments since they are often confined to certain (although sizable) subsets of the genome.In this paper, we explore an example of such a data integration procedure. We focus on the prediction of membership in protein complexes for individual genes. For this, we recruit six different data sources that include expression profiles, interaction data, essentiality and localization information. Each of these data sources individually contains some weakly predictive information with respect to protein complexes, but we show how this prediction can be improved by combining all of them. Supplementary information is available at http://bioinfo.mbb.yale.edu/integrate/interactions/.Abbreviations: TP: true possitive; TN: true negative; FP: false positive; FN: false negative; Y2H: yeast two-hybrid.  相似文献   

9.
Based on nearly complete genome sequences from a variety of organisms data on naturally occurring genetic variation on the scale of hundreds of loci to entire genomes have been collected in recent years. In parallel, new statistical tests have been developed to infer evidence of recent positive selection from these data and to localize the target regions of selection in the genome. These methods have now been successfully applied to Drosophila melanogaster , humans, mice and a few plant species. In genomic regions of normal recombination rates, the targets of positive selection have been mapped down to the level of individual genes.  相似文献   

10.

Background  

The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies.  相似文献   

11.
Sungear is a software system that supports a rapid, visually interactive and biologist-driven comparison of large datasets. The datasets can come from microarray experiments (e.g. genes induced in each experiment), from comparative genomics (e.g. genes present in each genome) or even from non-biological applications (e.g. demographics or baseball statistics). Sungear represents multiple datasets as vertices in a polygon. Each possible intersection among the sets is represented as a circle inside the polygon. The position of the circle is determined by the position of the vertices represented in the intersection and the area of the circle is determined by the number of elements in the intersection. Sungear shows which Gene Ontology terms are over-represented in a subset of circles or anchors. The intuitive Sungear interface has enabled biologists to determine quickly which dataset or groups of datasets play a role in a biological function of interest. AVAILABILITY: A live online version of Sungear can be found at http://virtualplant-prod.bio.nyu.edu/cgi-bin/sungear/index.cgi  相似文献   

12.
Performance of genomic selection in mice   总被引:2,自引:1,他引:2       下载免费PDF全文
Selection plans in plant and animal breeding are driven by genetic evaluation. Recent developments suggest using massive genetic marker information, known as "genomic selection." There is little evidence of its performance, though. We empirically compared three strategies for selection: (1) use of pedigree and phenotypic information, (2) use of genomewide markers and phenotypic information, and (3) the combination of both. We analyzed four traits from a heterogeneous mouse population (http://gscan.well.ox.ac.uk/), including 1884 individuals and 10,946 SNP markers. We used linear mixed models, using extensions of association analysis. Cross-validation techniques were used, providing assumption-free estimates of predictive ability. Sampling of validation and training data sets was carried out across and within families, which allows comparing across- and within-family information. Use of genomewide genetic markers increased predictive ability up to 0.22 across families and up to 0.03 within families. The latter is not statistically significant. These values are roughly comparable to increases of up to 0.57 (across family) and 0.14 (within family) in accuracy of prediction of genetic value. In this data set, within-family information was more accurate than across-family information, and populational linkage disequilibrium was not a completely accurate source of information for genetic evaluation. This fact questions some applications of genomic selection.  相似文献   

13.

Background  

Metagenomic analyses of microbial communities that are comprehensive enough to provide multiple samples of most loci in the genomes of the dominant organism types will also reveal patterns of genetic variation within natural populations. New bioinformatic tools will enable visualization and comprehensive analysis of this sequence variation and inference of recent evolutionary and ecological processes.  相似文献   

14.
Selection on quantitative characters is commonly mesured in natural populations using regression techniques based on phenotypic covariances between traits and fitness. However, such methods do not give an accutate view of the causal relationship between the phenotype and fitness if enviornmental factors also contribute to covariances between traits and fitness. A recently developed method for estimating selection eliminates the problem of bias resulting from enviormental covariances. This underappreciated method represents a significant addition to the toolbox of evolutionary ecologist.  相似文献   

15.

Background

Simulation and empirical studies of genomic selection (GS) show accuracies sufficient to generate rapid gains in early selection cycles. Beyond those cycles, allele frequency changes, recombination, and inbreeding make analytical prediction of gain impossible. The impacts of GS on long-term gain should be studied prior to its implementation.

Methods

A simulation case-study of this issue was done for barley, an inbred crop. On the basis of marker data on 192 breeding lines from an elite six-row spring barley program, stochastic simulation was used to explore the effects of large or small initial training populations with heritabilities of 0.2 or 0.5, applying GS before or after phenotyping, and applying additional weight on low-frequency favorable marker alleles. Genomic predictions were from ridge regression or a Bayesian analysis.

Results

Assuming that applying GS prior to phenotyping shortened breeding cycle time by 50%, this practice strongly increased early selection gains but also caused the loss of many favorable QTL alleles, leading to loss of genetic variance, loss of GS accuracy, and a low selection plateau. Placing additional weight on low-frequency favorable marker alleles, however, allowed GS to increase their frequency earlier on, causing an initial increase in genetic variance. This dynamic led to higher long-term gain while mitigating losses in short-term gain. Weighted GS also increased the maintenance of marker polymorphism, ensuring that QTL-marker linkage disequilibrium was higher than in unweighted GS.

Conclusions

Losing favorable alleles that are in weak linkage disequilibrium with markers is perhaps inevitable when using GS. Placing additional weight on low-frequency favorable alleles, however, may reduce the rate of loss of such alleles to below that of phenotypic selection. Applying such weights at the beginning of GS implementation is important.  相似文献   

16.

Key message

We propose a novel computational method for genomic selection that combines identical-by-state (IBS)-based Haseman–Elston (HE) regression and best linear prediction (BLP), called HE-BLP.

Abstract

Genomic best linear unbiased prediction (GBLUP) has been widely used in whole-genome prediction for breeding programs. To determine the total genetic variance of a training population, a linear mixed model (LMM) should be solved via restricted maximum likelihood (REML), whose computational complexity is the cube of the sample size. We proposed a novel computational method combining identical-by-state (IBS)-based Haseman–Elston (HE) regression and best linear prediction (BLP), called HE-BLP. With this method, the total genetic variance can be estimated by solving a simple HE linear regression, which has a computational complex of the sample size squared; therefore, it is suitable for large-scale genomic data, except those with which environmental effects need to be estimated simultaneously, because it does not allow for this estimation. In Monte Carlo simulation studies, the estimated heritability based on HE was identical to that based on REML, and the prediction accuracy via HE-BLP and traditional GBLUP was also quite similar when quantitative trait loci (QTLs) were randomly distributed along the genome and their effects followed a normal distribution. In addition, the kernel row number (KRN) trait in a maize IBM population was used to evaluate the performance of the two methods; the results showed similar prediction accuracy of breeding values despite slightly different estimated heritability via HE and REML, probably due to the underlying genetic architecture. HE-BLP can be a future genomic selection method choice for even larger sets of genomic data in certain special cases where environmental effects can be ignored. The software for HE regression and the simulation program is available online in the Genetic Analysis Repository (GEAR; https://github.com/gc5k/GEAR/wiki).
  相似文献   

17.
18.
Schmieder R  Edwards R 《PloS one》2011,6(3):e17288
High-throughput sequencing technologies have strongly impacted microbiology, providing a rapid and cost-effective way of generating draft genomes and exploring microbial diversity. However, sequences obtained from impure nucleic acid preparations may contain DNA from sources other than the sample. Those sequence contaminations are a serious concern to the quality of the data used for downstream analysis, causing misassembly of sequence contigs and erroneous conclusions. Therefore, the removal of sequence contaminants is a necessary and required step for all sequencing projects. We developed DeconSeq, a robust framework for the rapid, automated identification and removal of sequence contamination in longer-read datasets (150 bp mean read length). DeconSeq is publicly available as standalone and web-based versions. The results can be exported for subsequent analysis, and the databases used for the web-based version are automatically updated on a regular basis. DeconSeq categorizes possible contamination sequences, eliminates redundant hits with higher similarity to non-contaminant genomes, and provides graphical visualizations of the alignment results and classifications. Using DeconSeq, we conducted an analysis of possible human DNA contamination in 202 previously published microbial and viral metagenomes and found possible contamination in 145 (72%) metagenomes with as high as 64% contaminating sequences. This new framework allows scientists to automatically detect and efficiently remove unwanted sequence contamination from their datasets while eliminating critical limitations of current methods. DeconSeq's web interface is simple and user-friendly. The standalone version allows offline analysis and integration into existing data processing pipelines. DeconSeq's results reveal whether the sequencing experiment has succeeded, whether the correct sample was sequenced, and whether the sample contains any sequence contamination from DNA preparation or host. In addition, the analysis of 202 metagenomes demonstrated significant contamination of the non-human associated metagenomes, suggesting that this method is appropriate for screening all metagenomes. DeconSeq is available at http://deconseq.sourceforge.net/.  相似文献   

19.
20.
Levels of genetic differentiation between populations can be highly variable across the genome, with divergent selection contributing to such heterogeneous genomic divergence. For example, loci under divergent selection and those tightly physically linked to them may exhibit stronger differentiation than neutral regions with weak or no linkage to such loci. Divergent selection can also increase genome‐wide neutral differentiation by reducing gene flow (e.g. by causing ecological speciation), thus promoting divergence via the stochastic effects of genetic drift. These consequences of divergent selection are being reported in recently accumulating studies that identify: (i) ‘outlier loci’ with higher levels of divergence than expected under neutrality, and (ii) a positive association between the degree of adaptive phenotypic divergence and levels of molecular genetic differentiation across population pairs [‘isolation by adaptation’ (IBA)]. The latter pattern arises because as adaptive divergence increases, gene flow is reduced (thereby promoting drift) and genetic hitchhiking increased. Here, we review and integrate these previously disconnected concepts and literatures. We find that studies generally report 5–10% of loci to be outliers. These selected regions were often dispersed across the genome, commonly exhibited replicated divergence across different population pairs, and could sometimes be associated with specific ecological variables. IBA was not infrequently observed, even at neutral loci putatively unlinked to those under divergent selection. Overall, we conclude that divergent selection makes diverse contributions to heterogeneous genomic divergence. Nonetheless, the number, size, and distribution of genomic regions affected by selection varied substantially among studies, leading us to discuss the potential role of divergent selection in the growth of regions of differentiation (i.e. genomic islands of divergence), a topic in need of future investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号