首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Production and Regeneration of Lactobacillus casei Protoplasts   总被引:6,自引:11,他引:6       下载免费PDF全文
Methods for the production and regeneration of Lactobacillus casei protoplasts are described. Protoplasts of L. casei strains were obtained by treatment with mutanolysin or with mutanolysin and lysozyme together in a protoplast formation buffer containing 0.02 M HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) (pH 7.0), 1 mM MgCl2, 0.5% gelatin, and 0.3 M raffinose. Cells were regenerated on a complex medium supplemented with bovine serum albumin, MgCl2, CaCl2, gelatin, and raffinose. Lengthy digestion with lytic enzymes inhibited the capacity of protoplasts to regenerate. The optimum conditions of protoplast formation varied from strain to strain. Using predetermined optimal conditions it was possible to prepare protoplasts of several L. casei strains and regenerate them with 10 to 40% efficiency. The methods were applicable to other species of lactobacilli as well.  相似文献   

2.
Regeneration of protoplasts to bacilli was attempted in several strains of Bacillus closely related to Bacillus subtilis 168. On DM3 and similar media using succinate as osmotic support, only B. subtilis 168 and Bacillus natto ATCC 15245 were able to regenerate. Media containing mannitol as osmotic support, and agar as gelling agent gave rise to L-form colonies with Bacillus licheniformis NCTC 6346. Many of the L-form colonies were able to regenerate to the bacillary form when plated on the mannitol medium solidified with gelatin. All of the Bacillus species tested were able to regenerate on the latter medium at rates sufficient to allow protoplast transformation and fusion experiments.  相似文献   

3.
Method for production and regeneration of Lactobacillus delbrueckii protoplasts are described. The protoplasts were obtained by treatment with a mixture of lysozyme and mutanolysin in protoplast buffer at pH 6.5 with different osmotic stabilizers. The protoplasts were regenerated on deMan, Rogosa and Sharpe (MRS) with various osmotic stabilizers. Maximum protoplast formation was obtained in protoplast buffer with sucrose as an osmotic stabilizer using a combination of lysozyme (1 mg/ml) and mutanolysin (10 μg/ml). Maximum protoplast regeneration was obtained on MRS medium with sucrose (0.5 M) as an osmotic stabilizer. The regeneration medium was also applicable to other species of lactobacilli as well. This is, to our knowledge, the first report on protoplast formation and efficient regeneration in case of L. delbrueckii.  相似文献   

4.
Bacillus subtilis protoplasts regenerate on media containing horse serum, bovine serum or gelatin. These compounds could be replaced by polyvinyl pyrrolidone or dextran, and a medium which contained 30 g polyvinyl pyrrolidone and 20 mg casamino acids per liter with chemically defined ingredients was especially useful for selection of prototrophs, e.g., by protoplast fusion. Polyvinyl pyrrolidone and other plasma expanders stimulated protoplast division in liquid media and improved protoplast survival on agar media.  相似文献   

5.
A preparation of two commercial enzymes was used to liberate protoplasts from 16-h-old mycelium of Phanerochaete chrysosporium. Regeneration frequencies of up to 5% were attained when the protoplasts were plated in a medium containing 10% sorbose and 3% agar. Fusion of protoplasts from different auxotrophic strains in polyethylene glycol-Ca2+ produced heterokaryons. Separation of the heterokaryons into their constituent homokaryotic strains could be effected through protoplast release and formation of colonies on regeneration agar.  相似文献   

6.
The regeneration of Candida glycerinogenes protoplasts is a major step following genetic manipulations such as fusion and DNA-mediated transformation. An investigation of protoplast formation and cytological examination was used to gain further insight into the loss of protoplast viability in osmotically stabilized support media. Protoplasts with the highest regeneration frequency (98.6% protoplasts/mL) were isolated, using lysozyme dissolved in 1M sorbitol osmoticum. The commercial enzyme preparations, osmotic stabilisers, and growth phase were effective in raising the protoplast yield. Sodium chloride was effective for protoplast preparation; however, sugars and sugar alcohols were better for protoplast regeneration. Sorbitol at a concentration of 1 M was used in regeneration agar for further studies. Regeneration of colonies from protoplasts was maximal (11 ~ 15%) when protoplasts were incorporated in cooled agar containing 0.5% glucose, supplemented with 1M sorbitol as osmotic stabilizer. C. glycerinogenes strain was highly sensitive to zeocin, so transformation of protoplasts and PEG-mediated was achieved with an improved transformation system, using plasmid pURGAP-gfp containing zeocin gene driven by a PCgGAP promoter from C. glycerinogenes to express gfp gene and be transformed into the 5.8S rDNA site of C. glycerinogenes in order to test the system for studying the yeast osmoregulation. We developed an efficient method for transformation of C. glycerinogenes, and parameters involved in transformation efficiency were optimized. Expressions of gfp at different levels were conducted under osmotic stress containing NaCl, KCl, sorbitol or glycerol for the recombinant strains. These improved procedures for protoplast isolation, regeneration and transformation proved to be useful applications in genetic studies for other Candida species and industrial yeast.  相似文献   

7.
Mycelial protoplast isolation and regeneration of Lentinus lepideus   总被引:14,自引:0,他引:14  
Kim BK  Kang JH  Jin M  Kim HW  Shim MJ  Choi EC 《Life sciences》2000,66(14):1359-1367
Generation of fungal protoplast is essential for fusion and transformation systems. Protoplast fusion offers great potential for the improvement of industrially important microorganisms. To establish conditions for the protoplast isolation and regeneration of the mycelia of Lentinus lepideus, various enzymes and osmotic stabilizers were examined. To investigate suitable medium for the culture of L. lepideus, the mycelia were grown in ten different media at 28 degrees C for 10 days. Among them potato dextrose agar (PDA) medium was found to be the best for colony growth. When Novozym 234, cellulase and beta-glucuronidase were added to the mycelia in combination or alone, Novozym 234 alone at the concentration of 10 mg/ml was the most effective for the protoplast yield. Purified spherical protoplasts of the mycelia were osmotically hypersensitive and further incubation of the mycelia with the lytic enzyme resulted in the older parts of the hyphae swollen. When we applied various osmotic stabilizers at the fixed concentration of 0.6 M on the protoplasts, the yields of protoplasts were increased until 4-hr incubation. However application of sucrose or MgSO4 led to further protection of protoplasts after that time and reached a plateau on 5- and 7-hr incubations, respectively. The suitable incubation time and optimal pH with the lytic enzyme for the maximum release of protoplasts were 6 hrs of incubation and pH 5, respectively. When we examined various osmotic stabilizers for the regeneration of the protoplast, the complete medium containing 0.6 M sucrose induced highest hyphal growth with regeneration frequency of 3.28%.  相似文献   

8.
In this study, pediococci selective medium (PSM) was evaluated for the enumeration of Pediococcus acidilactici and Pediococcus pentosaceus from probiotic animal feed and silage inoculants. PSM is based on the complex basal medium MRS supplemented with cysteine hydrochloride, novobiocin, vancomycin, and nystatin. No significant change in electivity was observed when pediococci where recovered from culture or powder-based products following incubation at 37 degrees C under anaerobic conditions for 24 h. The medium was suitable for the enumeration of pediococci in samples also containing bacilli, bifidobacteria, enterococci, lactobacilli, lactococci, propionibacteria, streptococci, and yeast components. However, to inhibit Lactobacillus plantarum and Lactobacillus casei, ampicillin was added and the revised medium, termed PSM+A, was also considered to be suitably elective for pediococci recovered from powder. In addition, a rapid PFGE protocol is presented, which allows Pediococcus species and strain verification from colonies in less than 3 days.  相似文献   

9.
Gao C  Xue Y  Ma Y 《PloS one》2011,6(11):e28148
Among the diverse alkaliphilic Bacillus strains, only a little have been reported to be genetically transformed. In this study, an efficient protoplast transformation procedure was developed for recalcitrant alkaliphilic Bacillus sp. N16-5. The procedure involved polyethylene glycol-induced DNA uptake by the protoplasts and subsequent protoplast regeneration with a developed hard agar regeneration medium. An in vivo methylation strategy was introduced to methylate the exogenous plasmid DNA for improving the transformation efficiency. The transformation efficiency reached to 1.1×10(5) transformants per μg plasmid DNA with methylated plasmid pHCMC04 and the developed hard agar regeneration medium. This procedure might also be applicable to the genetic transformation of other Bacillus strains.  相似文献   

10.
Abstract A method for protoplast formation and regeneration suitable for Lactobacillus reuteri strains was developed.
Lysozyme-treated cells formed protoplasts at a high percentage and regenerative ability varied according to the strains considered.
Moreover, production and regeneration of protoplasts promoted the loss of plasmids harboured by the strains.  相似文献   

11.
毛栓菌原生质体制备和再生及单核菌株产漆酶特性   总被引:1,自引:0,他引:1  
毛栓菌Trametes hirsuta能有效地降解木质素,在生物燃料、制浆和饲料工业等方面具有很高应用价值。为了获得遗传性能稳定的T. hirsuta单核菌株,研究了其菌丝生长培养基的类型、菌丝生长时间(菌龄)、酶解时间、原生质体纯化离心速度和原生质体再生培养基类型对T. hirsuta YJ-9-1原生质体制备与再生的影响;采用DAPI染色和锁状联合缺失的观察,从再生株中筛选单核菌株并考察其产酶特性。结果表明:采用YGM菌丝生长培养基、88h菌龄、1h酶解时间、4,000r/min原生质体纯化离心速度以及YGMS再生培养基,最终可获得密度大约为5.0×106个/mL的原生质体悬浮液和9.1%的再生率;从200株再生菌株中筛选出了3株单核菌株,其中一株单核菌株D-2-1的漆酶产量比原菌T. hirsuta YJ-9-1明显提高,在第12天其漆酶酶活为771.67U/L,是原菌的1.51倍。  相似文献   

12.
Protoplast isolation and regeneration in Streptomyces clavuligerus   总被引:10,自引:0,他引:10  
The regeneration of streptomycete protoplasts is a major step following genetic manipulations such as fusion and DNA-mediated transformation. Reports of studies on the regeneration of protoplasts from Streptomyces clavuligerus are limited and for this reason the experiments described in this paper were carried out. An investigation of protoplast formation and cytology was made to gain further insight into the loss of protoplast viability in osmotically stabilized support media. Protoplasts with the highest regeneration frequency were isolated from mycelium, grown in a two-stage culture system (without glycine), using lysozyme dissolved in a sucrose osmoticum containing 1% bovine serum albumin. The latter promoted improved protoplast viability. A systematic survey was made of the components of regeneration medium R5, previously used for S. clavuligerus, and other potentially advantageous components and conditions, in an attempt to raise the regeneration frequency of the protoplasts. An improved regeneration medium (R6) and protocol which supported higher and more consistent levels of regeneration of S. clavuligerus protoplasts resulted from these experiments. These improved procedures for protoplast isolation and regeneration proved to be suitable for other streptomycete species.  相似文献   

13.
蓝色犁头霉原生质体的制备与再生   总被引:4,自引:0,他引:4  
研究了氢化可的松生产菌蓝色犁头霉原生质体的形成与再生。通过对溶解酶系统的选择,影响原生质体形成的因素如渗透压稳定剂、酶浓度、菌龄、菌丝培养基和培养方式等因素进行考察,发现以0.4mol/L NH4Cl做为稳定剂、2.5mg/mL溶壁酶和5mg/mL纤维素酶组成的混合酶液溶解菌丝,4h后原生质体量可达10^6cell/mL。通过显微镜观察原生质体的形成过程以及在高渗培养基上的再生情况,再生率为15.6%。  相似文献   

14.
This study aimed to develop a solid culture medium for differential isolation of the probiotic strain Lactobacillus casei Shirota (LcS) and for selective cultivation of lactobacilli present in oral samples. Type strains of lactobacilli and isolates from commercial probiotic products were inoculated onto modified de Man Rogosa Sharpe agar (termed 'LcS Select'), containing bromophenol blue pH indicator, vancomycin and reducing agent L-cysteine hydrochloride for differential colony morphology development. L. casei Shirota cultured on the novel medium produced distinctive colony morphologies, different from other lactobacilli tested. LcS-characteristic colonies were recovered on LcS Select medium from samples of saliva and tongue plaque following a four-week probiotic intervention study. The viable count of presumptive LcS colonies correlated with those isolated on a non-commercial lactitol-LBS-vancomycin agar (LLV) developed for a selective isolation of LcS from faeces. The novel LcS Select medium proved suitable for differential isolation of the probiotic strain L. casei Shirota from oral samples containing mixed microbial populations. It can also be used for selective growth of vancomycin-resistant lactobacilli. There are few available culture media that are sufficiently selective to enable isolation of probiotic strains from mixed populations. LcS Select medium provides a cheaper, yet effective tool in this context.  相似文献   

15.
The isolation and regenration of prostoplasts from Lipomyces starkeyi have been optimised. Snail enzyme (12 mg·ml−1) proved to be the most effective lytic enzyme although treatment with Novozym 234, Cellulase CP and β-glucanase also resulted in protoplast formation. Magnesium sulphate (0.55 M) was shown to be the best fro protoplast isolation. Exponential phase cells were most susceptible to the lytic enzyme, stationary phase cells appeared to be resistant. 2-Mercaptoethanol or dithiothreitol did not enahance the isolation of protoplasts in this yeast. The optimum pH for protoplast isolation was 5.8. Ultrastructural observations were made on cells during lytic digestion and revealed that the cell wall and capsule are stripped away from the protoplast.Protoplast synthesised new cell wall material when cultured on osmotically stabilised medium, regeneration was not oberved in liquid medium. Optimum regeneration occured when protoplasts were embedded in a thin layer of minimal medium osmotically stabilised with mannitol (0.6M) and solidified with 1.5–2.0% agar. A basal layer of medium was also stabilised with mannitol (0.6 M) but contained 3% agar. The lytic enzyme used for protoplast isolation did not appear to effect the regeneration of protoplasts.  相似文献   

16.
The fungal strains Graphium putredinis and Trichoderma harzianum were selected as parents for fusant development. Protoplasts were isolated using the combination of lysing enzymes Novozym 234 and cellulase with 0.6 M KCl as osmotic stabilizer. The optimum conditions for release of viable protoplasts from the fungal mycelium viz. age of the mycelium, lytic enzymes, osmotic stabilizers, pH, incubation period and regeneration medium were determined. Intergeneric protoplast fusion was carried out using 50% polyethylene glycol with calcium chloride (CaCl2) and glycine buffer and the conditions for effective protoplast fusion, viz. fusogen, osmotic stabilizer, pH, incubation period and regeneration medium were optimized. At optimum conditions, the regeneration frequency of the fused protoplasts on potato dextrose agar (PDA) medium and fusion frequency were calculated. The regeneration frequency on non-selective (PDA) and selective media (PDA amended with starch) was determined for the parental and fusant strains in which, fusant showed a higher rate of regeneration. Fusant formation was confirmed by morphological markers (colony morphology and spore size and shape) and genetical markers like, mycelial protein pattern, restriction digestion pattern and random amplified polymorphic DNA (RAPD) analysis. The efficiency of these parental strains and their intergeneric fusant in the production of hydrolytic enzymes – amylases (treatment plant for sago factory effluent), cellulases (bioethanol), xylanases (bleaching agents for waste paper pulp) and proteases (additives in commercial detergents) – have probable applications in various industrial processes.  相似文献   

17.
Plants have been regenerated from Nicotiana africana Merxm. protoplasts isolated from cell suspensions. Two different sequences of media were assayed, one usually used to regenerate tobacco mesophyll protoplasts (K3,RMO) the other previously recommended for potato mesophyll protoplast regeneration (W-S-S, ST-1, ST-2, S-3). Only the media for potato protoplasts were efficient for African tobacco plant regeneration. The regeneration efficiency was 6.3 plants per 1000 plated protoplasts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Conditions for the regeneration of cells from protoplasts of Streptomyces chrysomallus, a producer of the peptide antibiotic actinomycin, are described. Regeneration of fusion products was most efficient at 27-30 degrees C on regeneration R2 medium (Okanishi et al., 1974) containing 0.25 M-sucrose. The addition of phosphate (150-300 mg 1(-1) to the medium and incubation at 23 degrees C proved to be optimal for the regeneration of individual strains. Highest recombination frequencies after protoplast fusion were obtained by fusing protoplasts in the presence of 45% (w/v) polyethylene glycol 6000. With strains that produce no, or little antibiotic, protoplasts must be present in excess in fusion mixtures in order to overcome inhibition of regeneration by the antibiotic-producing partner.  相似文献   

19.
Yeast protoplasts may regenerate the cell wall and revert to cells if immobilized in a 2%–5% Ca-alginate gel and cultured in an osmotically stabilized medium. The method of protoplast immobilization and subsequent isolation from the gel is described in detail. The reversion yield is dependent of the actual gel concentration, gel shape (beads vs. sheets) and of a medium molarity, and it may be up to 90%. The morphology of the cell wall regeneration and morphology of reversion to the cell forms correspond to protoplast development in gelatin or agar gels.  相似文献   

20.

Key message

A standard method has been developed with which we are able to fully regenerate protoplasts of different Cichorium species. For the first time, endive protoplasts have been regenerated into plantlets.

Abstract

Protoplast regeneration is essential for somatic hybridizations. In this study, a standard method for plantlet regeneration from Cichorium protoplasts was developed. We evaluated the effect of the low melting point agarose (LMPA) bead technique on the regeneration capacity of protoplasts of seven C. intybus and four C. endivia genotypes. The LMPA bead technique was more efficient than culture in liquid or solid medium and allowed us to obtain plating efficiencies up to 4.9?% in C. intybus genotypes and efficiencies of up to 0.7?% in C. endivia genotypes. Moreover, the LMPA bead technique offers great advantages over liquid and solid culture systems: the media can be readily refreshed, protoplasts can be monitored separately, and microcalli can easily be removed from the beads. This increased efficiency was observed for all of the 11 Cichorium genotypes tested. Shoot formation was induced more efficiently when using 0.5?mg?l?1 indole-3-acetic acid-enriched medium (up to 87.5?% of the protoplast-derived calli started shoot development) compared to 1-naphthaleneacetic acid-enriched medium. The LMPA bead technique optimized in this study enabled for the first time the full plantlet regeneration from protoplasts of C. endivia genotypes and increased the protoplast regenerating ability in other Cichorium species. This fine-tuned LMPA bead technique can therefore be applied for protoplast regeneration after protoplast fusions of the genus Cichorium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号