首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schürmann  Wolfgang  Peter  Roland 《Hydrobiologia》1998,383(1-3):111-116
At a concentration of 0.2% (21 m M) in culture water, magnesium chloride impaired muscle contraction and completely inhibited head regeneration in specimens of Dugesia polychroa cut prepharyngeally. The wound stayed open for nine days, with neoblasts accumulating beneath the wound without any signs of differentiation. Extremely delayed wound closure occurred by spreading epithelial cells, and was completed after 30 days in the magnesium chloride solution. Histological examination confirmed the absence of any regenerated head structures. Interestingly, the inhibitory effect was removed when such headless fragments were cut once more and kept in normal culture water: complete head regeneration then occurred at a normal rate. Among several possible explanations for the failure to regenerate, the following hypothesis is an attractive alternative: direct contact between parenchyma and epithelial cells during the period following injury seems to be an essential stimulus for the start of cell differentiation within the blastema, and the lack of such contact as a result of the drug action prevents normal regeneration. When the wound has eventually closed, a continuous basement membrane separates epithelium from parenchyma. Thus a direct contact between these tissues is never established. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Tail regeneration in urodeles requires the coordinated growth and patterning of the regenerating tissues types, including the spinal cord, cartilage and muscle. The dorsoventral (DV) orientation of the spinal cord at the amputation plane determines the DV patterning of the regenerating spinal cord as well as the patterning of surrounding tissues such as cartilage. We investigated this phenomenon on a molecular level. Both the mature and regenerating axolotl spinal cord express molecular markers of DV progenitor cell domains found during embryonic neural tube development, including Pax6, Pax7 and Msx1. Furthermore, the expression of Sonic hedgehog (Shh) is localized to the ventral floor plate domain in both mature and regenerating spinal cord. Patched1 receptor expression indicated that hedgehog signaling occurs not only within the spinal cord but is also transmitted to the surrounding blastema. Cyclopamine treatment revealed that hedgehog signaling is not only required for DV patterning of the regenerating spinal cord but also had profound effects on the regeneration of surrounding, mesodermal tissues. Proliferation of tail blastema cells was severely impaired, resulting in an overall cessation of tail regeneration, and blastema cells no longer expressed the early cartilage marker Sox9. Spinal cord removal experiments revealed that hedgehog signaling, while required for blastema growth is not sufficient for tail regeneration in the absence of the spinal cord. By contrast to the cyclopamine effect on tail regeneration, cyclopamine-treated regenerating limbs achieve a normal length and contain cartilage. This study represents the first molecular localization of DV patterning information in mature tissue that controls regeneration. Interestingly, although tail regeneration does not occur through the formation of somites, the Shh-dependent pathways that control embryonic somite patterning and proliferation may be utilized within the blastema, albeit with a different topography to mediate growth and patterning of tail tissues during regeneration.  相似文献   

3.
The tail of the Xenopus tadpole contains major axial structures, including a spinal cord, notochord and myotomes, and regenerates within 2 weeks following amputation. The tail regeneration in Xenopus can provide insights into the molecular basis of the regeneration mechanism. The regenerated tail has some differences from the normal tail, including an immature spinal cord and incomplete segmentation of the muscle masses. Lineage analyses have suggested that the tail tissues are reconstructed with lineage-restricted stem cells derived from their own tissues in clear contrast to urodele regeneration, in which multipotent blastema cells derived from differentiated cells play a major role. Comprehensive gene expression analyses resulted in the identification of a panel of genes involved in sequential steps of the regeneration. Manipulation of genes' activities suggested that the tail regeneration is regulated through several major signaling pathways.  相似文献   

4.
Enchytraeus japonensis, a recently described terrestrial oligochaete, reproduces asexually by fragmentation and subsequent regeneration. Taking notice of its high potential as a new material for regeneration study, detailed studies were undertaken on the regeneration and reproduction of E. japonensis. The full-grown body divided into 6-13 fragments that regenerated into complete individuals in 4 days, grew to full length in 10 days, and then fragmented again. Regeneration of the head and tail was epimorphic, involving blastema formation, while old segments in the regenerating fragment morphallactically transformed into the appropriate segments to retain the proper body proportions, which could be visualized by histochemistry for alkaline phosphatase. Artificially cut fragments regenerated either normally or into dicephalic monsters with biaxial heads depending on the conditions. Fragmentation could be induced by decapitation, and sexual reproduction was also found inducible in the laboratory. These findings, together with its simple metameric morphology and ease of culture and handling, suggest that E. japonensis is an excellent material for studying animal regeneration.  相似文献   

5.
After tail and limb amputation in lizard, injection of 5BrdU for 6 days produces immunolabelled cells in most tissues of tail and limb stumps. After further 8 and 16 days, and 14 and 22 days of regeneration, numerous 5BrdU-labelled cells are detected in regenerating tail and limb, derived from most stump tissues. In tail blastema cone at 14 days, sparse-labelled cells remain in proximal dermis, muscles, cartilaginous tube and external layers of wound epidermis but are numerous in the blastema. In apical regions at 22 days of regeneration, labelled mesenchymal cells are sparse, while the apical wound epidermis contains numerous labelled cells in suprabasal and external layers, indicating cell accumulation from more proximal epidermis. Cell proliferation dilutes the label, and keratinocytes take 8 days to migrate into corneous layers. In healing limbs, labelled cells remain sparse from 14 to 22 days of regeneration in wound epidermis and repairing tissues and little labelling dilution occurs indicating low cell proliferation for local tissue repair but not distal growth. Labelled cells are present in epidermis, intermuscle and peri-nerve connectives, bone periosteum, cartilaginous callus and sparse fibroblasts, leading to the formation of a scarring outgrowth. Resident stem cells and dedifferentiation occur when stump tissues are damaged.  相似文献   

6.
The immunolocalization of the muscle segmental homoeobox protein Msx1‐2 of 27–34 kDa in the regenerating tail blastema of a lizard shows prevalent localization in the apical ependyma of the regenerating spinal cord and less intense labelling in the wound epidermis, in the apical epidermal peg (AEP), and in the regenerating segmental muscles. The AEP is a micro‐region of the regenerating epidermis located at the tail tip of the blastema, likely corresponding to the AEC of the amphibian blastema. No immunolabelling is present in the wound epidermis and scarring blastema of the limb at 18–21 days of regeneration, except for sparse repairing muscles. The presence of a proximal–distal gradient of Msx1‐2 protein, generated from the apical ependyma, is suggested by the intensity of immunolabelling. The AEP and the ependyma are believed to induce and maintain tail regeneration, and this study suggests that Msx1‐2 proteins are components of the signalling system that maintains active growth of the tail blastema. The lack of activation and production of Msx1‐2 protein in the limb are likely due to the intense inflammatory reaction following amputation. This study confirms that, like during regeneration in fishes and amphibians, also the blastema of lizards utilizes common signalling pathways for maintaining regeneration.  相似文献   

7.
The positional differences in the regenerative capability of individual body parts of the planarian Girardia (Dugesia) tigrina were analyzed. The paper shows the significance of the size and positional differences of individual fragments of planarians for their regenerative capabilities, as well as the fundamental difference in the mechanisms of the head and tail blastema formation. A scheme of regeneration that includes two populations of pluripotent stem cells called neoblasts is suggested. The two populations of neoblasts differ in their role and distribution along the planarian body. Specifically, the population of neoblasts involved in the formation of any blastema migrates to the nearest blastema, and the population participating only in the creation of the head blastema migrates along the planarian body, following the gradient of biomass of the damaged axons arising after the amputation of the head end. The maximal size of the head blastema was found in the fragment obtained after cutting off the head fragment at the eye level, and the maximal portion of all pluripotent stem cells migrating into two blastemas was found in the fragment obtained by cutting the planarian above the mouth, followed by cutting off the head fragment at the eye level.  相似文献   

8.
Unlike humans, some vertebrate animals are able to completely regenerate damaged appendages and other organs. For example, adult zebrafish will regenerate the complex structure of an amputated caudal fin to a degree that the original and replacement fins are indistinguishable. The blastema, a mass of cells that uniquely forms following appendage amputation in regenerating animals, is the major source of regenerated tissue. However, the cell lineage(s) that contribute to the blastema and their ultimate contribution(s) to the regenerated fin have not been definitively characterized. It has been suggested that cells near the amputation site dedifferentiate forming multipotent progenitors that populate the blastema and then give rise to multiple cell types of the regenerated fin. Other studies propose that blastema cells are non-uniform populations that remain restricted in their potential to contribute to different cell lineages. We tested these models by using inducible Cre-lox technology to generate adult zebrafish with distinct, isolated groups of genetically labeled cells within the caudal fin. We then tracked populations of several cell types over the entire course of fin regeneration in individual animals. We found no evidence for the existence of multipotent progenitors. Instead, multiple cell types, including epidermal cells, intra-ray fibroblasts, and osteoblasts, contribute to the newly regenerated tissue while remaining highly restricted with respect to their developmental identity. Our studies further demonstrate that the regenerating fin consists of many repeating blastema "units" dedicated to each fin ray. These blastemas each have an organized structure of lineage restricted, dedifferentiated cells that cooperate to regenerate the caudal fin.  相似文献   

9.
To understand the cellular events during planarian regeneration, we analyzed the process of pharynx regeneration in both head and tail pieces using cell-type-specific markers. Interestingly, cells expressing the pharynx-muscle-specific myosin heavy chain gene (DjMHC-A) appeared within 24 h after amputation (prior to the formation of a pharynx rudiment) in the mesenchymal space of the stump, not in the blastema region. These DjMHC-A-positive cells migrated to the midline and formed the pharynx rudiment. Even after formation of the pharynx rudiment, DjMHC-A-positive cells constantly appeared in the mesenchymal space in the region surrounding the pharynx rudiment and participated in the growth of the pharynx rudiment. These observations clearly indicated that the cells involved in pharynx-muscle formation are committed in the mesenchymal space of the stump, rather than in the blastema region or the pharynx rudiment during planarian regeneration. We also analyzed the process of regeneration of the pharynx epithelia using a monoclonal antibody and investigated the origin of the pharynx epithelia.  相似文献   

10.
Review. The regenerating tail of lizard transits through a tumour-like stage represented by the regenerative blastema. Acta Zoologica (Stockolm). Molecular studies on lizard tail regeneration indicate that the blastema stage is a tumour-like outgrowth capable of self-regulate to produce a new tail. Various oncogenes and tumour suppressors are expressed, and their proteins are localized in specific regions of the growing blastema. SnoRNAs are exclusively overexpressed in the tail blastema suggesting changes in ribosome translation efficiency in blastema cells, like in cancer. Blastema cells secrete high levels of hyaluronate and adopt an anaerobic metabolism (Warburg effect). These studies indicate that the lizard blastema represents a unique case among terrestrial vertebrates of physiological tumour remission. Mesenchymal cells and fibroblasts forming the blastema are turned within 1–2 months into a functional organ, the tail. In vitro studies on isolated mesenchymal cells from the regenerative blastema shows that these cells do not undergo contact inhibition but continue proliferation after confluence, and contain nestin, vimentin and K17. After 2–3 weeks they stratify into 5–7 layers forming a pellicle of loose connective tissue. Future molecular studies on genes and proteins that allow the control of growth in the lizard blastema may help to determine how lizards turn a tumour into a new organ with numerous differentiated and functional tissues, providing clues on cancer growth regulation.  相似文献   

11.
This paper describes the regeneration of the caudal axial skeleton after amputation of the tail, including about 20 vertebrae, in the gymnotoid fish Eigenmannia virescens. Seven days after amputation, a regeneration blastema developed and soft tissues degenerated. A cylinder of cartilage developed at the end of the notochord. When this cartilage was about 10 mm long (21 days), perichondral ossification began. The cartilage continued to elongate and ossification increased while osteoclasts began to destroy the cartilage ventrally. Finally, a bony rod formed and at its tip the cartilage persisted as a rod, 2 to 3 mm long. The anal fin also regenerated: Endoskeletal cartilage developed first, following by differentiation of the lepidotrichia, and finally ossification of the endoskeleton.  相似文献   

12.
During tail regeneration in urodele amphibians such as axolotls, all of the tissue types, including muscle, dermis, spinal cord, and cartilage, are regenerated. It is not known how this diversity of cell types is reformed with such precision. In particular, the number and variety of mature cell types in the remaining stump that contribute to the blastema is unclear. Using Nomarski imaging, we followed the process of regeneration in the larval axolotl tail. Combining this with in vivo fluorescent labeling of single muscle fibers, we show that mature muscle dedifferentiates. Muscle dedifferentiation occurs by the synchronous fragmentation of the multinucleate muscle fiber into mononucleate cells followed by rapid cell proliferation and the extension of cell processes. We further show that direct clipping of the muscle fiber and severe tissue damage around the fiber are both required to initiate dedifferentiation. Our observations also make it possible to estimate for the first time how many of the blastema cells arise specifically from muscle dedifferentiation. Calculations based on our data suggest that up to 29% of nondermal-derived cells in the blastema come from dedifferentiation of mature muscle fibers. Overall, these results show that endogenous multinucleate muscle fibers can dedifferentiate into mononucleate cells and contribute significantly to the blastema.  相似文献   

13.
《Journal of morphology》2017,278(3):380-389
Unique among amniotes, many lizards are able to self‐detach (autotomize) their tail and then regenerate a replacement. Tail regeneration involves the formation of a blastema, an accumulation of proliferating cells at the site of autotomy. Over time, cells of the blastema give rise to most of the tissues in the replacement tail. In non‐amniotes capable of regenerating (such as urodeles and some teleost fish), the blastema is reported to be essentially avascular until tissue differentiation takes place. For tail regenerating lizards less is known. Here, we investigate neovascularization during tail regeneration in the leopard gecko (Eublepharis macularius ). We demonstrate that the gecko tail blastema is not an avascular structure. Beginning with the onset of regenerative outgrowth, structurally mature (mural cell supported) blood vessels are found within the blastema. Although the pattern of blood vessel distribution in the regenerate tail differs from that of the original, a hierarchical network is established, with vessels of varying luminal diameters and wall thicknesses. Using immunostaining, we determine that blastema outgrowth and tissue differentiation is characterized by a dynamic interplay between the pro‐angiogenic protein vascular endothelial growth factor (VEGF) and the anti‐angiogenic protein thrombospondin‐1 (TSP‐1). VEGF‐expression is initially widespread, but diminishes as tissues differentiate. In contrast, TSP‐1 expression is initially restricted but becomes more abundant as VEGF‐expression wanes. We predict that variation in the neovascular response observed between different regeneration‐competent species likely relates to the volume of the blastema. J. Morphol. 278:380–389, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

14.

Background

Epimorphic regeneration results in the restoration of lost tissues and structures from an aggregation of proliferating cells known as a blastema. Among amniotes the most striking example of epimorphic regeneration comes from tail regenerating lizards. Although tail regeneration is often studied in the context of ecological costs and benefits, details of the sequence of tissue-level events are lacking. Here we investigate the anatomical and histological events that characterize tail regeneration in the leopard gecko, Eublepharis macularius.

Results

Tail structure and tissue composition were examined at multiple days following tail loss, revealing a conserved pattern of regeneration. Removal of the tail results in a consistent series of morphological and histological events. Tail loss is followed by a latent period of wound healing with no visible signs of regenerative outgrowth. During this latent period basal cells of the epidermis proliferate and gradually cover the wound. An additional aggregation of proliferating cells accumulates adjacent to the distal tip of the severed spinal cord marking the first appearance of the blastema. Continued growth of the blastema is matched by the initiation of angiogenesis, followed by the re-development of peripheral axons and the ependymal tube of the spinal cord. Skeletal tissue differentiation, corresponding with the expression of Sox9, and muscle re-development are delayed until tail outgrowth is well underway.

Conclusions

We demonstrate that tail regeneration in lizards involves a highly conserved sequence of events permitting the establishment of a staging table. We show that tail loss is followed by a latent period of scar-free healing of the wound site, and that regeneration is blastema-mediated. We conclude that the major events of epimorphic regeneration are highly conserved across vertebrates and that a comparative approach is an invaluable biomedical tool for ongoing regenerative research.  相似文献   

15.
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the molecularly complex CNS, can regenerate from a small piece of the planarian body. In this study, a collection of neural markers has been used to characterize at the molecular level how the planarian CNS is rebuilt. Planarian CNS is composed of an anterior brain and a pair of ventral nerve cords that are distinct and overlapping structures in the head region. During regeneration, 12 neural markers have been classified as early, mid-regeneration and late expression genes depending on when they are upregulated in the regenerative blastema. Interestingly, the results from this study show that the comparison of the expression patterns of different neural genes supports the view that at day one of regeneration, the new brain appears within the blastema, whereas the pre-existing ventral nerve cords remain in the old tissues. Three stages in planarian CNS regeneration are suggested.  相似文献   

16.
17.
When the electric organ (EO) of weakly electric fish is amputated, a blastema forms from which new EO and muscle cells arise. However, the progenitor cells that contribute to the blastema are unknown. We studied regeneration of the electric organ in Sternopygus to answer this question. The EO of this species is composed of electrocyte cells surrounded by peripheral bundles of muscle fibers. Fish were injected with 5′-bromodeoxyuridine (BrdU) 24 h after amputating the terminal portion of the EO. At this time, a population of small cells were labeled in the extracellular matrix between electrocytes and muscle fibers. These cells did not label in control fish injected with saline or in nonamputated BrdU-injected fish. For the first 6 days postamputation, increasing numbers of BrdU-labeled cells appeared at the wound margin. A blastema formed 6 days after amputation and contained numerous BrdU-labeled cells. At 10 days postamputation, clusters of BrdU-positive cells were seen throughout the wound margin and proximal blastema. At 14 days, BrdU-labeled nuclei were present within developing electrocytes. Labeling alternate sections with MF20 antimyosin and AE1 anticytokeratin antibodies confirmed that BrdU-positive multinucleate cells coexpress myosin and cytokeratin epitopes, diagnostic of newly regenerated electrocytes. Electron micrographs reveal that the small cells surrounding muscles and electrocytes are similar; they contain an elongate nucleus, are largely devoid of cytoplasm, and possess few organelles. This morphology and evidence of myogenic potential suggests that these cells are satellite cells. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Intercalation is the process whereby cells located at the boundary of a wound interact to stimulate proliferation and the restoration of the structures between the boundaries that were lost during wounding. Thus, intercalation is widely considered to be the mechanism of regeneration. When a salamander limb is amputated, the entire cascade of regeneration events is activated, and the missing limb segments and their boundaries (joints) as well as the structures within each segment are regenerated. Therefore, in an amputated limb it is not possible to distinguish between intersegmental regeneration (formation of new segments/joints) and intrasegmental regeneration (formation of structures within a given segment), and it is not possible to study the differential regulation of these two processes. We have used two models for regeneration that allow us to study these two processes independently, and report that inter- and intrasegmental regeneration are different processes regulated by different signaling pathways. New limb segments/joints can be regenerated from cells that dedifferentiate to form blastema cells in response to signaling that is mediated in part by fibroblast growth factor.  相似文献   

19.
Tail regeneration in the gecko Sphaerodactylus argus shows that the formation of an axial elastic skeleton is functional for the new tail (Acta Zoologica, Stockolm). The present autoradiographic and immunohistochemical study describes tail regeneration and formation of the axial skeleton in early regenerating tails of the Jamaican red-tailed gecko, Sphaerodactylus argus. Cell proliferation, studied by tritiated thymidine, shows intense labelling mainly in forming scales and differentiating cartilaginous, muscle and ependymal cells of the regenerating spinal cord, while the labelling is more diffuse in the apical blastema and proximal connective tissues. The slow apical proliferation maintains the tail front growing while in more proximal regions, cells initiate differentiation, losing thymidine-labelling. Cell proliferation is maximal at the beginning of scales, muscles and cartilage formation. Scales are regenerated following migration into the dermis of tritiated thymidine-labelled keratinocytes to form epithelial pegs that later split and give rise new scales. Differentiation of new corneous layers begins underneath the external corneous epidermis, starting with a shedding layer followed by a beta-layer that accumulates corneous beta proteins. Intense proliferation of apical myoblasts gives rise to long myotubes and segmented muscles. The vertebral column is substituted with a cartilaginous tube made of turgid chondrocytes accumulating chondroitin sulphate proteoglycan and elastin. Therefore, the regenerated tail remains flexible and capable of curling to maintain efficient the climbing ability in these geckos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号