首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 721 毫秒
1.
The cyp19 encodes P450 aromatase, the enzyme catalyzing the conversion of estrogens from androgens. Estrogens affect the dimorphic, anatomical, functional and behavioral aspects of development of both males and females. In zebrafish, two cyp19 genes, cyp19a and cyp19b were found. They are expressed in ovary and brain, respectively. Expression of cyp19b can be detected by 11 days post-fertilization (dpf) by in situ hybridization in the olfactory bulbs, ventral telencephalic region and the hypothalamus of the brain in both male and female, where it is generally known to be affecting the reproductive function and sexual behavior. COS-1 clones permanently expressing the enzymes have been isolated. Both aromatase enzymes encoded by these two genes are functional in COS-1 cells and they can use androstenedione and testosterone equally efficiently. The presence of two functional cyp19 in zebrafish has its evolutionary and physiological importance.  相似文献   

2.
3.
Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromBA) and ovary (P450aromAB) and have a different developmental program (BA) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24–48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (α, β, and γ). The 5′-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (ab) are opposite to fish pituitary (ba). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30–48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the regulatory role of estrogen in neurodevelopment.  相似文献   

4.
5.
A cyp19a gene that contains nine exons and eight introns was identified from Carassius auratus and was mainly expressed in the ovary. The cyp19a mRNA level after hatching was initially low, but began to increase from 25 days after hatching. A number of cis‐acting elements, such as the oestrogen receptor, steroidogenic factor 1 and SOX‐5 recognition sites, were found in the promoter of the cyp19 gene, which possesses a promoter function confirmed by a recombination green fluorescent protein checking system in vitro.  相似文献   

6.
7.
Enantioselectivity of chiral pesticides in environmental safety has attracted more and more attention. In this study, we evaluated the enantioselective toxicity of rac‐metalaxyl and R‐metalaxyl to zebrafish (Danio rerio) embryos through various malformations including pericardial edema, yolk sac edema, crooked body, and short tails. The results showed that there were significant differences in toxicity to zebrafish embryos caused by rac‐metalaxyl and R‐metalaxyl, and the LC50s at 96 h are 416.41 (353.91, 499.29) mg · L‐1 and 320.650 (279.80, 363.46) mg · L‐1, respectively. In order to explore the possible mechanism of the development defects, the genes involved in the hypothalamic–pituitary–gonadal axis (vtg1, vtg2, cyp17, cyp19a, cyp19b) and hypothalamic–pituitary–thyroid axis (dio1, dio2, nis, tg, tpo) were quantified by quantitative real‐time polymerase chain reaction (qRT‐PCR). The results revealed that there were no significant differences in the expression of vtg1, vtg2, cyp17, cyp19a, and cyp19b after exposure to rac‐metalaxyl. However, the expression of vtg1, cyp19a, and cyp19b decreased significantly after exposure to R‐metalaxyl. And likewise, rac‐metalaxyl only caused the upregulation of dio2, while R‐metalaxyl suppressed the expression of dio1 and tpo and induced the expression of dio2 and nis. The change of gene expression may cause the enantioselectivity in developmental toxicity in zebrafish embryo. The data provided here will be helpful for us to comprehensively understand the potential ecological risks of the currently used chiral fungicides. Chirality 28:489–494, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Cinnamic acid 4-hydroxylase (CA4H) is the second enzyme involved in phenylpropanoid biosynthesis and is a member of the cytochrome P-450 superfamily. Three CA4H homologous genes, cyp73a, cyp73b, and cyp73c, and a cDNA clone of cyp73a were isolated from a genomic library and a cDNA library of a hybrid aspen; Populus kitakamiensis, and were characterized. They might be interrupted by two introns each. cyp73a and cyp73b were very similar to each other not only in coding regions but also in non-coding regions. Southern blot analysis showed that four homologous genes for CA4H constructed a small gene family in the diploid genome of P. kitakamiensis. In the promoter regions, there were many common m-element-like sequences in phenylpropanoid biosynthesis genes.  相似文献   

9.
10.
The cyp11 includes cyp11a and cyp11b in most mammals and teleosts, encoded cholesterol side chain lyase and 11β-hydroxylase, respectively. It is essential in steroid hormone synthesis. However, studies on the regulation of cyp11 are limited, especially in teleosts. In this study, the molecular characterization and function of cyp11a and cyp11b of black rockfish was investigated. Both of them showed high homology with other teleost counterparts by phylogenetic analysis. The expression of cyp11a and cyp11b exhibited a clear sexually dimorphic pattern, with a higher expression level in testis than that of in ovaries. During the different developmental stages (40 dpf, 80 dpf, 190 dpf, 360 dpf, 720 dpf), the expression of cyp11a was earlier than cyp11b. In situ hybridization results showed that cyp11a and cyp11b were mainly expressed in oogonia and oocytes of the ovary. They were located in spermatogonia and interstitial compartment in the 1.5-year-old gonads, and spermatocytesgonia and the peritubular myoid cell of the testis in the 2.5-year-old gonads. To explore the distinct roles of cyp11a and cyp11b in gonads, oestrogen and androgens were used to stimulate the primary testicular and ovarian cells. The expressions of cyp11a and cyp11b were tested under different dose of 17α-methyltestosterone (17α-MT) and 17β-estradiol (E2). The results showed cyp11a was significantly increased at 10−6 mol ml–1 of 17α-MT and 10−8 mol ml–1 of E2 in ovary and 10−10 mol ml–1 of 17α-MT and E2 in testis, while cyp11b was significantly decreased after 17α-MT and E2 treatment. These results indicated that cyp11a and cyp11b were likely to have different functions, and also implied they might play an important roles in the differentiation of gonads and the synthesis of steroids in black rockfish.  相似文献   

11.
12.
13.
14.
15.
16.
心血管系统形成于胚胎发育极早期并为其他器官的发育、维持、修复所必需,血管生长异常可造成多种疾病.然而,由于研究对象所限,胚胎血管的发育机制尚未完全阐明,调控血管发育的基因也所知有限.通过Tol2转座子介导的大规模增强子诱捕筛选到26个血管特异表达绿色荧光蛋白(EGFP)报告基因的转基因斑马鱼系,其中有一些品系在胚胎的某些特异血管结构中表达绿色荧光.通过linker-mediated PCR克隆到22个鱼系中Tol2插入位点附近的斑马鱼基因组序列,其中有17个鱼系的Tol2插入可定位到现有的斑马鱼基因组中的单一位点.通过整体胚胎原位杂交对插入位点附近的基因进行表达谱分析,得到8个表达谱与转基因鱼系一致的基因,涵盖了9个鱼系,其中dusp5基因对应于2个不同的鱼系.这8个基因中包括hhex、ets1a和dusp5等3个功能已知的基因,但是大部分(5个)基因在斑马鱼中尚无功能研究,分别为zvsg1、micall2a、arl8b(1of2)、zgc:73355以及hecw2(1of2).hhex和ets1a基因对血管与血细胞前体的发育具有重要作用,所获得的EGFP报告基因受hhex或ets1a基因增强子控制的转基因斑马鱼(mp378b和mp430c-2)为国际首例,为深入研究这两个基因在血管与血液发育中的作用机制提供了新的机遇.筛选到的功能未知基因可以用来进一步研究其在血管发育中的功能;同时,利用所获得的转基因鱼系,可以实现实时、动态观察成血管细胞的起源、分化与基因表达调控,并可用于高通量小分子药物筛选等重要研究.  相似文献   

17.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

18.
In fish species with temperature-dependent sex determination (TSD) or genotypic sex determination plus temperature effects (GSD + TE), temperature can either affect sex differentiation or determine the sex. However, it is unknown if epigenetic control of cyp19a1a expression is critical for high temperature induced masculinization in the freshwater fish Nile tilapia. We analyzed the cyp19a1a DNA methylation levels in three age groups and found that they were lower in females than in males. At 8 months of age, males had DNA methylation levels of the cyp19a1a promoter that were almost twice as high as those of females. Exposure to high temperatures increased the cyp19a1a promoter DNA methylation levels from 30.87 ± 4.56% to 48.34 ± 0.92% (P = 0.035) in females and from 50.33 ± 7.38% to 51.66 ± 4.75% in males (P = 0.867). The increases in the cyp19a1a promoter DNA methylation levels were associated with the mRNA expression levels and might play a role in promoting gonadal differentiation in high temperature induced group females toward the male pathway. Western blot analysis revealed that the cyp19a1a protein expression levels in females significantly declined after high temperature treatment; only a slight decline was recorded in male fish. These results reveal that epigenetic control of cyp19a1a mRNA and protein expression is related to the environmental temperature and sex ratios in fish with TSD or GSD + TE.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号