首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This is the first report describing the complete oxidation of dimethyl sulfide (DMS) to sulfate by an anoxygenic, phototrophic purple sulfur bacterium. Complete DMS oxidation was observed in cultures of Thiocapsa roseopersicina M11 incubated under oxic/light conditions, resulting in a yield of 30.1 mg protein mmol–1. No oxidation of DMS occurred under anoxic/light conditions. Chloroform, methyl butyl ether, and 3-amino-1,2,4-triazole, which are specific inhibitors of aerobic DMS oxidation in thiobacilli and hyphomicrobia, did not affect DMS oxidation in strain M11. This could be due to limited transport of the inhibitors through the cell membrane. The growth yield on sulfide as sole electron donor was 22.2 mg protein mmol–1 under anoxic/light conditions. Since aerobic respiration of sulfide would have resulted in yields lower than 22 mg protein mmol–1, the higher yield on DMS under oxic/light conditions suggests that the methyl groups of DMS have served as an additional carbon source or as an electron donor in addition to the sulfide moiety. The kinetic parameters V max and K m for DMS oxidation under oxic/light conditions were 12.4 ± 1.3 nmol (mg protein)–1 min–1 and 2 μM, respectively. T. roseopersicina M11 also produced DMS by cleavage of dimethylsulfoniopropionate (DMSP). Specific DMSP cleavage rates increased with increasing initial substrate concentrations, suggesting that DMSP lyase was only partly induced at lower initial DMSP concentrations. A comparison of T. roseopersicina strains revealed that only strain M11 was able to oxidize DMS and cleave DMSP. Both strain M11 and strain 5811 accumulated DMSP intracellularly during growth, while strain 1711 showed neither of these characteristics. Phylogenetic comparison based on 16S rRNA gene sequence revealed a similarity of 99.0% between strain M11 and strain 5811, and 97.6% between strain M11 and strain 1711. DMS and DMSP utilization thus appear to be strain-specific. Received: 26 March 1999 / Accepted: 18 June 1999  相似文献   

2.
Abstract: The purple sulfur bacterium Thiocapsa roseopersicina was examined for photo-autotrophic growth on dimethyl sulfide (DMS). The maximum specific growth rate μ max (0.068 h−1), saturation constant K s (38 μm l−1), and yield (5.24 mg protein mmol−1 DMS) were determined in chemostat experiments. Dimethyl sulfoxide was the only product of DMS oxidation. Batch experiments revealed the simultaneous oxidation of DMS and hydrogen sulfide.  相似文献   

3.
The localization of hydrogenase in the phototrophic bacterium Thiocapsa roseopersicina was investigated by subcellular fractionations, and transmission electron microscopic immunocytochemistry. By using sonicated cells and measuring in vitro hydrogenase activities in soluble and membrane fractions, respectively, a weak hydrophobic interaction between the hydrogenase enzyme and the T. roseopersicina membranes was observed. Polyclonal antisera directed against the purified hydrogenase were raised in rabbits and exhibited one band in native-PAGE/Western immunoblot analysis. Native-PAGE/activity stain confirmed the identity of this band as being hydrogenase. Immunocytolocalization experiments using ultrathin sections showed an internal localization of the hydrogenase enzyme. A higher specific labeling was associated with chromatophores, indicating a possible coupling of hydrogenase with the photosynthetic membranes in the T. roseopersicina cells.  相似文献   

4.
5.
The dominant purple sulfur bacterium of laminated sediment ecosystems in temperate environments, Thiocapsa roseopersicina, was cultivated in sulfide-limited continuous cultures (D=0.03 h-1) subjected to various combined diel regimen of aeration and illumination in order to simulate environmental conditions in microbial mats. For comparison, cultures were grown under similar illumination regimens but continuously anoxic conditions.Bacteriochlorophyll a (BChla) and carotenoid synthesis was restricted to anoxic-dark periods and did not occur during oxic-light periods. An increase in the length of the oxic-light periods resulted in decreased pigment contents. However, phototrophic growth remained possible even at 20 h oxic-light/4 h anoxic-dark regimens. When anoxic conditions were maintained throughtout, BChla synthesis occurred both during light and dark periods.Glycogen was synthesized in the light and degraded in the dark. Calculations showed that degradation of 1/4–1/5 of the glycogen is sufficient to account for the BChla and carotenoid synthesis in the dark.The data showed that T. roseopersicina is very well adapted to cope with the combined oxygen and light regimes as they occur in microbial mats, which may explain the dominance of this bacterium in the purple layer of these sediment ecosystems.Non-standard abbreviations BChl bacteriochlorophyll - specific growth rate - D dilution rate - SR concentration of limiting substrate in reservoir bottle  相似文献   

6.
Cell death and mutagenesis in bleomycin-treated cells of Thiocapsa roseopersicina (a purple sulfur bacterium) was studied by cultivation in a semisolid medium (agar-shake technique). This technique has also proven useful in assessing the frequency of antibiotic mutations by detecting and counting individual colonies of Thiocapsa roseopersicina. The frequencies of spontaneous mutants resistant to ampicillin, rifampicin, cloramphenicol, tetracycline, kanamycin, streptomycin, and neomycin were also studied: they ranged between 2×10-9 and 9×10-8. Bleomycin (4 g/ml) sharply increased the frequency of ampicillin-resistant mutants, from 10-8 (spontaneous) to 4×10-4 (induced), in 17 h. An inducible, error-prone mechanisms of DNA synthesis seems to be responsible for this enhancement of the mutagenic effect. This is the first report on the sensitivity to several antibiotics, and capacity of lethality and mutagenesis by bleomycin has been studied in a purple sulfur bacterium.  相似文献   

7.
Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10–30 s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy.  相似文献   

8.
Abstract The anoxygenic phototrophic purple sulfur bacterium Thiocapsa roseopersicina was grown in illuminated continuous cultures with thiosulfate as growth limiting substrate. Aeration resulted in completely colorless cells growing chemotrophically, whereafter the conditions were changed to a 23 h oxic/1 h anoxic regime. After 11 volume changes at a dilution rate of 0.031 h−1 (35% of μmax) a time dependent equilibrium was established. During the 23 h oxic periods bacteriochlorophyll a synthesis (BChl a ) was not observed, whereas during the 1 h anoxic periods synthesis was maximal (i.e. 1.1 μg (mg protein)−1 h−1). As a result the BChl a concentration gradually increased from zero to an average value over 24 h of 1.9 μg (mg protein)−1. Concomitantly, the protein concentration increased from 13.9 mg 1−1 during continuous oxic conditions to 28.8 mg 1−1. For comparison, the protein concentration during fully phototrophic growth at an identical thiosulfate concentration in the inflowing medium was 53.7 mg 1−1. The specific respiration rate was 8 μmol O2 (mg protein)−1 h−1 during full chemotrophic growth and gradually decreased to 3.5 μmol O2 (mg protein)−1 h−1 after 11 volume changes at the regime employed. These data show that T. rosepersicina is able to simultaneously utilize light and aerobic respiration of thiosulfate as sources of energy. The ecological relevance of the data is discussed.  相似文献   

9.
Abstract Laminated microbial sediment ecosystems which develop in the upper tidal zone of Scapa Flow beaches, Orkney Islands were investigated with respect to depth profiles of chlorophyll a , bacteriochlorophyll a , pH, redox, oxygen and the following inorganic sulfur compounds: free sulfide, FeS, polysulfides, polythionates, elemental sulfur and thiosulfate. In addition, particle size distribution and light penetration were determined at all sampling locations.
Three main types of laminated sediment ecosystems were recognized, designated the 'classical' type (layer of cyanobacteria underlain by layer of purple sulfur bacteria), the 'single-layer' type (chlorophyll a containing organisms absent, purple sulfur bacteria at sediment surface), and the 'inverted' type (chlorophyll a containing organisms underlying purple sulfur bacteria). The dominant purple sulfur bacterium was Thiocapsa roseopersicina and Chromatium vinosum was observed less commonly. The principal cyanobacterium found in these sulfureta was Oscillatoria sp.
The depth horizon at which maximum populations of purple sulfur bacteria were recorded often did not coincide with the sulfide/oxygen interface but was located closer to the sediment surface where polysulfides, polythionates, elemental sulfur and occasionally thiosulfate were present. The structure of these sulfureta is discussed in relation to the chemolithotrophic growth capacities of Thiocapsa in the presence of oxygen.  相似文献   

10.
The effects of some metal ions on the activity and activation of Thiocapsa roseopersicina hydrogenase have been studied. Inhibitory effects of Ni2+ and Cd2+ on the catalytic activity of the enzyme were reversible and competitive with respect to methyl viologen (MV) in the reaction of hydrogen oxidation. The affinity of these metal ions to the enzyme increased significantly with increasing pH, suggesting that their interactions are determined by electrostatic forces. Cu2+ and Hg2+ irreversibly inhibited the hydrogenase activity. A decrease in absorption of hydrogenase at 400 nm in the presence of these metal ions is indicative of the destruction of the FeS cluster in the enzyme.  相似文献   

11.
Abstract Mass developments of the purple sulfur bacterium Thiocapsa roseopersicina in the surface layers of sandy beaches on the Orkney Islands were examined with respect to microcolony formation on sand grains, vertical distribution of viable cells and the ability to colonize beach surfaces. It was observed that microcolonies of the non-motile phototrophic bacterium cemented individual sand grains to each other and that the resulting aggregates could withstand severe wave action and may play a decisive role in the stabilization of these sandy beaches.
After removal of the top layer similar population densities of T. roseopersicina were recorded within seven days. It was calculated that the net specific growth rate initially was 0.53 day−1 (0.022 h−1).
Laboratory studies strongly suggest that the populations of T. roseopersicina on sheltered beaches on the Orkney Islands were growing phototrophically in the light even when the microenvironment was oxic. Bacteriochlorophyll a synthesis was repressed by oxygen and occurred during periods with low light intensities when the microenvironment was anoxic and contained sulfide.  相似文献   

12.
The method of purification up to electrophoretical homogeneity of cytochrome c552 from the phototrophic bacterium Thiocapsa roseopersicina, strain BBS is described. For the cytochrome absorption spectrum the maxima at 417, 523 and 552 nm are characteristic for the reduced state and at 409 nm--for the oxidized state. The molecular weight is equal to 62000. The cytochrome contains two hemes per molecule and consists of two subunits. pI is 4.1; E0' is about 10 mV. Cytochrome c552 is a flavoprotein according to its fluorescence spectrum and subunit structure. T. roseopersicina cytochrome c552 is able to be reduced with sulphide, cysteine and ascorbate as well as with H2 in the presence of hydrogenase from the same bacterium. These data suggest that cytochrome c552 from T. roseopersicina functions in vivo at the initial stage of electron transport from hydrogen and sulphide.  相似文献   

13.
Chemotrophic growth capacities of the purple sulfur bacterium Thiocapsa roseopersicina strain M1 were studied in continuous culture under thiosulfate limitation.Pigment synthesis was completely inhibited upon a shift from anaerobic to semi-aerobic conditions (52 μM O2) in the light, but no active breakdown occurred. During the transient state, the cells grew in a mixed photo- and chemolithotrophic mode; the specific respiration rate gradually increased with a concomitant drop in the bacteriochlorophyll a content. Photolithotrophically grown cells have the ability to respire. It was concluded that photosynthesis and respiration compete for electrons, but that photosynthesis is preferred under electron donor-limiting conditions, when the cells still contain large amounts of pigments. Eventually, a fully chemolithotrophic steady state was attained.The chemolithotropic growth of T. roseopersicina was studied in the dark under semiaerobic conditions at various dilution rates. The maximum specific growth rate was 68% of the maximum attainable growth rate under photolithotrophic conditions. The growth affinity for thiosulfate was high (Km = 1.5 μM). The yield on thiosulfate under chemolithotrophic conditions exceeded that of thiobacilli. Oxygen uptake was studied in short-term experiments. It was shown that respiration in T. roseopersicina has a Km of approx. 1 μM O2. the ecological importance for T. roseopersicina of chemolithotrophic growth and pigment content is discussed with respect to the occurrence of T. roseopersicina in laminated microbial ecosystems and its possible competition with colorless sulfur bacteria.  相似文献   

14.
A pigment mutant strain of the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina BBS was isolated by plasposon mutagenesis. Nineteen open reading frame, most of which are thought to be genes involved in the biosynthesis of carotenoids, bacteriochlorophyll, and the photosynthetic reaction center, were identified surrounding the plasposon in a 22-kb-long chromosomal locus. The general arrangement of the photosynthetic genes was similar to that in other purple photosynthetic bacteria; however, the locations of a few genes occurring in this region were unusual. Most of the gene products showed the highest similarity to the corresponding proteins in Rubrivivax gelatinosus. The plasposon was inserted into the crtD gene, likely inactivating crtC as well, and the carotenoid composition of the mutant strain corresponded to the aborted spirilloxanthin pathway. Homologous and heterologous complementation experiments indicated a conserved function of CrtC and CrtD in the purple photosynthetic bacteria. The crtDC and crtE genes were shown to be regulated by oxygen, and a role of CrtJ in aerobic repression was suggested.  相似文献   

15.
16.
Abstract Increasing growth medium NaCl concentration inhibited the growth of Thiocapsa roseopersicina OP-1 due to both an increase in the lag phase of the growth cycle and a reduction in specific growth rate. Addition of 0.05% w/v acetate to the growth medium stimulated growth at all NaCl concentrations, but this stimulation was greatest at supra-optimal NaCl concentrations. Optimal growth under all conditions tested in both batch and continuous culture was recorded at a salt concentration of 0.3 M NaCl. The intracellular concentrations of both K+ and sucrose increased linearly with increasing growth medium NaCl concentration indicating as osmoregulatory role for these solutes. Time courses of osmoadaptation in batch culture demonstrated a biphasic response to osmotic stress. The initial phase consisted of a rapid accumulation (within 30 min) of K+ from the growth medium. This was followed by a slower synthesis of sucrose which partially replaced intracellular K+ during the second phase of osmoadaptation.  相似文献   

17.
A 991 bp DNA fragment, consisting of a 225 amino acid reading frame homologous to outer membrane protein coding ompA gene, was cloned from a purple sulfur bacterium Allochromatium vinosum. The homology analysis revealed up to 51% similarity to other bacterial species. The absence of branching within diazotrophs or other taxonomically related groups shows the structural importance of the protein regardless of the metabolism and evolution of the species.  相似文献   

18.
19.
The dsr genes and the hydSL operon are present as separate entities in phototrophic sulfur oxidizers of the genera Allochromatium, Marichromatium, Thiocapsa and Thiocystis and are organized similarly as in Allochromatium vinosum and Thiocapsa roseopersicina, respectively. The dsrA gene, encoding the alpha subunit of 'reverse' siroheme sulfite reductase, is also present in two species of green sulfur bacteria pointing to an important and universal role of this enzyme and probably other proteins encoded in the dsr locus in the oxidation of stored sulfur by phototrophic bacteria. The hupSL genes are uniformly present in the members of the Chromatiaceae family tested. The two genes between hydS and hydL encode a membrane-bound b-type cytochrome and a soluble iron-sulfur protein, respectively, resembling subunits of heterodisulfide reductase from methanogenic archaea. These genes are similar but not identical to dsrM and dsrK, indicating that the derived proteins have distinct functions, the former in hydrogen metabolism and the latter in oxidative sulfur metabolism.  相似文献   

20.
Abstract Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium ) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim + sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号