首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   

2.
Islet amyloid polypeptide (IAPP), a 37 residue polypeptide, is the main protein component of islet amyloid deposits produced in the pancreas in Type 2 diabetes. Human IAPP contains five serine residues at positions 19, 20, 28, 29, and 34. Models of the IAPP amyloid fibril indicate a structure composed of two closely aligned columns of IAPP monomers with each monomer contributing to two intermolecular β‐strands. Ser 19 and Ser 20 are in the partially ordered β‐turn region, which links the two strands, whereas Ser 28, Ser 29, and Ser 34 are in the core region of the amyloid fibril. Ser 29 is involved in contacts between the two columns of monomers and is the part of the steric zipper interface. We undertook a study of individual serine substitutions with the hydrophobic isostere 2‐aminobutyric acid (2‐Abu) to examine the site‐specific role of serine side chains in IAPP amyloid formation. All five variants formed amyloid. The Ser 19 to 2‐Abu mutant accelerates amyloid formation by a factor of 3 to 4, while the Ser 29 to 2‐Abu mutation modestly slows the rate of amyloid formation. 2‐Abu replacements at the other sites had even smaller effects. The data demonstrate that the cross‐column interactions made by residue 29 are not essential for amyloid formation and also show that cross‐strand networks of hydrogen‐bonded Ser side chains, so called Ser‐ladders, are not required for IAPP amyloid formation. The effect of the Ser 19 to 2‐Abu mutant suggests that residues in this region are important for amyloid formation by IAPP.  相似文献   

3.
Islet Amyloid Polypeptide (IAPP) is a 37-residue hormone cosecreted with insulin by the β-cells of the pancreas. Amyloid fiber aggregation of IAPP has been correlated with the dysfunction and death of these cells in type II diabetics. The likely mechanisms by which IAPP gains toxic function include energy independent cell membrane penetration and induction of membrane depolarization. These processes have been correlated with solution biophysical observations of lipid bilayer catalyzed acceleration of amyloid formation. Although the relationship between amyloid formation and toxicity is poorly understood, the fact that conditions promoting one also favor the other suggests related membrane active structural states. Here, a novel high throughput screening protocol is described that capitalizes on this correlation to identify compounds that target membrane active species. Applied to a small library of 960 known bioactive compounds, we are able to report identification of 37 compounds of which 36 were not previously reported as active toward IAPP fiber formation. Several compounds tested in secondary cell viability assays also demonstrate cytoprotective effects. It is a general observation that peptide induced toxicity in several amyloid diseases (such as Alzhiemer’s and Parkinson’s) involves a membrane bound, preamyloid oligomeric species. Our data here suggest that a screening protocol based on lipid-catalyzed assembly will find mechanistically informative small molecule hits in this subclass of amyloid diseases.  相似文献   

4.
Lipid membranes modulate the structure of islet amyloid polypeptide   总被引:1,自引:0,他引:1  
Jayasinghe SA  Langen R 《Biochemistry》2005,44(36):12113-12119
The 37-residue islet amyloid polypeptide (IAPP) is thought to play an important role in the pathogenesis of type II diabetes. Despite a growing body of evidence implicating membrane interaction in IAPP toxicity, the membrane-bound form has not yet been well characterized. Here we used circular dichroism (CD) and fluorescence spectroscopy to investigate the molecular details of the interaction of IAPP with lipid membranes of varying composition. In the presence of membranes containing negatively charged phosphatidylserine (PS), we observed significant acceleration in the formation of IAPP aggregates. This acceleration is strongly modulated by the PS concentration and ionic strength, and is also observed at physiologically relevant PS concentrations. CD spectra of IAPP obtained immediately after the addition of membranes containing PS revealed features characteristic of an alpha-helical conformation approximately approximately 15-19 residues in length. After a longer incubation with membranes, IAPP gave rise to CD spectra characteristic of a beta-sheet conformation. Taken together, our CD and fluorescence data indicate that conditions that promote weakly stable alpha-helical conformations may promote IAPP aggregation. The potential roles of IAPP-membrane interaction and the novel membrane-bound alpha-helical conformation in IAPP aggregation are discussed.  相似文献   

5.
《Biophysical journal》2019,116(12):2304-2313
Protein glycation, also known as nonenzymatic glycosylation, is a spontaneous post-translational modification that would change the structure and stability of proteins or hormone peptides. Recent studies have indicated that glycation plays a role in type 2 diabetes (T2D) and neurodegenerative diseases. Over the last two decades, many types of advanced glycation end products (AGEs), formed through the reactions of an amino group of proteins with reducing sugars, have been identified and detected in vivo. However, the effect of glycation on protein aggregation has not been fully investigated. In this study, we aim to elucidate the impact of protein glycation on islet amyloid polypeptide (IAPP, also known as amylin) aggregation, which was strongly associated with T2D. We chemically synthesized glycated IAPP (AGE-IAPP) to mimic the consequence of this hormone peptide in a hyperglycemia (high blood sugar) environment. Our data revealed that AGE-IAPP formed amyloid faster than normal IAPP, and higher-molecular-weight AGE-IAPP oligomers were also observed in the early stage of aggregation. Circular dichroism spectra also indicated that AGE-IAPP exhibited faster conformational changes from random coil to its β-sheet fibrillar states. Moreover, AGE-IAPP can induce normal IAPP to expedite its aggregation process, and its fibrils can also act as templates to promote IAPP aggregation. AGE-IAPP, like normal IAPP, is capable of interacting with synthetic membranes and also exhibits cytotoxicity. Our studies demonstrated that glycation modification of IAPP promotes the amyloidogenic properties of IAPP, and it may play a role in accumulating additional amyloid during T2D progression.  相似文献   

6.
Abedini A  Raleigh DP 《Biochemistry》2005,44(49):16284-16291
The 37-residue islet amyloid polypeptide (IAPP) is the major protein component of the amyloid deposits found in type-II diabetes. IAPP is stored in a relatively low pH environment in the pancreatic secretory granules prior to its release to the extracellular environment. Human IAPP contains a single histidine at position 18. Aggregation of IAPP is considerably faster at a lower pH (4.0 +/- 0.3) than at high pH (8.8 +/- 0.3), as judged by turbidity and thioflavine-T fluorescence studies. The rate of aggregation at low pH increases drastically in the presence of salt. CD experiments show that the conversion of largely unstructured monomers to beta-sheet-rich structures is faster at high pH. TEM studies show that fibrils are formed at both pH values but are more prevalent at pH 8.8 (+/-0.3). Both the free N terminus of IAPP and His-18 will titrate over the pH range studied. An N-terminal acetylated fragment consisting of residues 8-37 of human IAPP was also studied to isolate contributions from the protonation of His-18. Previous studies have shown that this fragment forms protofibrils that are very similar to those formed by intact IAPP. The effects of varying the protonation state of His-18 in the 8-37 analogue indicate that the rate of aggregation and fibril formation is noticeably faster when His-18 is deprotonated, similar to the wild type. However, the pH-dependent effects are larger for full-length IAPP than for the disulfide-truncated, acetylated analogue. TEM studies indicate differences in the morphology of the deposits formed at high and low pH. These results are discussed in light of recent structural models of IAPP fibrils.  相似文献   

7.
The amyloid fibrils formed by islet amyloid polypeptide (IAPP) are associated with type II diabetes. One of the proposed mechanisms of the toxicity of IAPP is that it causes membrane damage. The fatal mutation of S20G human IAPP was reported to lead to early onset of type II diabetes and high tendency of amyloid formation in vitro. Characterizing the structural features of the S20G mutant in its monomeric state is experimentally difficult because of its unusually fast aggregation rate. Computational work complements experimental studies. We performed a series of molecular dynamics simulations of the monomeric state of human variants in the membrane. Our simulations are validated by extensive comparisons with experimental data. We find that a helical disruption at His18 is common to both human variants. An L-shaped motif of S20G mutant is observed in one of the conformational families. This motif that bends at His18 resembles the overall topology of IAPP fibrils. The conformational preorganization into the fibril-like topology provides a possible explanation for the fast aggregation rate of S20G IAPP.  相似文献   

8.
Type II diabetes mellitus (T2DM) is a disease characterized by progressive deposition of amyloid in the extracellular matrix of β-cells. We investigated the interaction of the islet amyloid polypeptide (IAPP) with lipid model raft mixtures and INS-1E cells using fluorescence microscopy techniques. Following preferential partitioning of IAPP into the fluid lipid phase, the membrane suffers irreversible damage and predominantly circularly-shaped lipid-containing IAPP amyloid is formed. Interaction studies with the pancreatic β-cell line INS-1E revealed that growing IAPP fibrils also incorporate substantial amounts of cellular membranes in vivo. Additionally, the inhibitory effect of the red wine compound resveratrol on IAPP fibril formation has been studied, alluding to its potential use in developing therapeutic strategies against T2DM.  相似文献   

9.
Pancreatic amyloid is formed by the aggregation of the 37-residue islet amyloid polypeptide (IAPP) in type II diabetes patients and is cytotoxic. Pancreatic amyloid deposits are found in more than 95 % of type II diabetes patients and their formation is strongly associated with disease progression. IAPP amyloid forms via a conformational transition of soluble IAPP into aggregated beta-sheets. We recently identified IAPP(22-27) (NFGAIL) as a minimum length sequence sufficient to self-associate into beta-sheet-containing amyloid fibrils. Here, we have used the NFGAIL model of the IAPP amyloid core as a structural template to design non-amyloidogenic derivatives of amyloidogenic sequences of IAPP that are able to interact with the native sequences and inhibit amyloid formation. The design of the derivatives was based on a simple, structure-based minimalistic and selective N-methylation approach. Accordingly, a minimum number of two amide bonds on the same side of the beta-strand of the amyloid core was N-methylated. This was expected to eliminate the two intermolecular backbone NH to CO hydrogen bonds which are critical for the extension of the beta-sheet dimers into multimers and amyloid. Other beta-strand "contact sides" remained intact allowing for the derivatives to interact with the native sequences. Double N-methylated derivatives of amyloidogenic and cytotoxic partial IAPP sequences generated included F(N-Me)GA(N-Me)IL, NF(N-Me)GA(N-Me)IL, SNNF(N-Me)GA(N-Me)IL, and SNNF(N-Me)GA(N-Me)ILSS and were found to be devoid of beta-sheet structure, amyloidogenicity and cytotoxicity according to Fourier transform-infrared spectroscopy (FT-IR), Congo red (CR) staining, electron microscopy (EM), and cell viability tests. The derivatives were able to interact with the native sequences and inhibit amyloid formation as shown by circular dichroism spectroscopy (CD), FT-IR and EM. Moreover, SNNF(N-Me)GA(N-Me)ILSS inhibited cytotoxicity of SNNFGAILSS and is thus the first reported inhibitor of IAPP amyloid formation and cytotoxicity. Our results demonstrate the validity of the design approach for IAPP and suggest that it may find application in understanding the structural features of amyloid formation and in the development of inhibitors of amyloid formation and cytotoxicity of other amyloidogenic polypeptides as well.  相似文献   

10.
Membrane permeabilization by Islet Amyloid Polypeptide (IAPP) is suggested to be the main mechanism for IAPP-induced cytotoxicity and death of insulin-producing β-cells in type 2 diabetes mellitus (T2DM). The insoluble fibrillar IAPP deposits (amyloid) present in the pancreas of most T2DM patients are not the primary suspects responsible for permeabilization of β-cell membranes. Instead, soluble IAPP oligomers are thought to be cytotoxic by forming membrane channels or by inducing bilayer disorder. In addition, the elongation of IAPP fibrils at the membrane, but not the fibrils themselves, could cause membrane disruption. Recent reports substantiate the formation of an α-helical, membrane-bound IAPP monomer as possible intermediate on the aggregation pathway. Here, the structures and membrane interactions of various IAPP species will be reviewed, and the proposed hypotheses for IAPP-induced membrane permeabilization and cytotoxicity will be discussed.  相似文献   

11.
Radovan D  Smirnovas V  Winter R 《Biochemistry》2008,47(24):6352-6360
Type II diabetes mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet beta-cell mass and the deposition of amyloid in the extracellular matrix of beta-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR spectroscopic and AFM studies were carried out to elucidate further information about the aggregation pathway as well as the aggregate structures of IAPP. To this end, a comparative fibrillation study of IAPP fragments was carried out as well. As high hydrostatic pressure (HHP) is acting to weaken or even prevent hydrophobic self-organization and electrostatic interactions, application of HHP has been used as a measure to reveal the importance of these interactions in the fibrillation process of IAPP and its fragments. IAPP preformed fibrils exhibit a strong polymorphism with heterogeneous structures, a large population of which are rather sensitive to high hydrostatic pressure, thus indicating a high percentage of ionic and hydrophobic interactions and loose packing of these species. Conversely, fragments 1-19 and 1-29 are resistant to pressure treatment, suggesting more densely packed aggregate structures with less void volume and strong cooperative hydrogen bonding. Furthermore, the FT-IR data indicate that fragment 1-29 has intermolecular beta-sheet conformational properties different from those of fragment 1-19, the latter exhibiting polymorphic behavior with more disordered structures and less strongly hydrogen bonded fibrillar assemblies. The data also suggest that hydrophobic interactions and/or less efficient packing of amino acids 30-37 region leads to the marked pressure sensitivity observed for full-length IAPP.  相似文献   

12.
Anguiano M  Nowak RJ  Lansbury PT 《Biochemistry》2002,41(38):11338-11343
Islet amyloid polypeptide (IAPP) and insulin are copackaged and cosecreted by pancreatic islet beta-cells. Non-insulin-dependent (type II) diabetes mellitus (NIDDM) is characterized by dysfunction and depletion of these beta-cells and also, in more than 90% of patients, amyloid plaques containing fibrillar IAPP. An aggregated but not necessarily fibrillar form of IAPP is toxic in cell culture, suggesting that prefibrillar oligomeric (protofibrillar) IAPP may be pathogenic. We report here that IAPP generates oligomeric species in vitro that are consumed as beta-sheet-rich fibrils grow. Protofibrillar IAPP, like protofibrillar alpha-synuclein, which is implicated in Parkinson's disease pathogenesis, permeabilizes synthetic vesicles by a pore-like mechanism. The formation of the IAPP amyloid pore is temporally correlated to the formation of early IAPP oligomers and its disappearance to the appearance of amyloid fibrils. Neither pores nor oligomers were formed by the nonfibrillogenic rat IAPP variant. The IAPP amyloid pore may be critical to the pathogenic mechanism of NIDDM, as other amyloid pores may be to Alzheimer's disease and Parkinson's disease.  相似文献   

13.
Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in the pancreas of over 90% of all cases of type-2 diabetes. We have generated a series of overlapping hexapeptides to target an amyloidogenic region of IAPP (residues 20-29) and examined their effects on fibril assembly. Peptide fragments corresponding to SNNFGA (residues 20-25) and GAILSST (residues 24-29) were strong inhibitors of the beta-sheet transition and amyloid aggregation. Circular dichroism indicated that even at 1:1 molar ratios, these peptides maintained full-length IAPP (1-37) in a largely random coil conformation. Negative stain electron microscopy revealed that co-incubation of these peptides with IAPP resulted in the formation of only semi-fibrous aggregates and loss of the typical high density and morphology of IAPP fibrils. This inhibitory activity, particularly for the SNNFGA sequence, also correlated with a reduction in IAPP-induced cytotoxicity as determined by cell culture studies. In contrast, the peptide NFGAIL (residues 22-27) enhanced IAPP fibril formation. Conversion to the amyloidogenic beta-sheet was immediate and the accompanying fibrils were more dense and complex than IAPP alone. The remaining peptide fragments either had no detectable effects or were only weakly inhibitory. Specificity of peptide activity was illustrated by the fragments, SSNNFG and AILSST. These differed from the most active inhibitors by only a single amino acid residue but delayed the random-to-beta conformational change only when used at higher molar ratios. This study has identified internal IAPP peptide fragments which can regulate fibrillogenesis and may be of therapeutic use for the treatment of type-2 diabetes.  相似文献   

14.
Islet amyloid polypeptide (IAPP) is a 37-amino acid amyloid protein intimately associated with pancreatic islet β-cell dysfunction and death in type II diabetes. In this study, we combine spectroscopic methods and microscopy to investigate α-helical IAPP-membrane interactions. Using light scattering and fluorescence microscopy, we observe that larger vesicles become smaller upon treatment with human or rat IAPP. Electron microscopy shows the formation of various highly curved structures such as tubules or smaller vesicles in a membrane-remodeling process, and spectrofluorometric detection of vesicle leakage shows disruption of membrane integrity. This effect is stronger for human IAPP than for the less toxic rat IAPP. From CD spectra in the presence of different-sized vesicles, we also uncover the membrane curvature-sensing ability of IAPP and find that it transitions from inducing to sensing membrane curvature when lipid negative charge is decreased. Our in vivo EM images of immunogold-labeled rat IAPP and human IAPP show both forms to localize to mitochondrial cristae, which contain not only locally curved membranes but also phosphatidylethanolamine and cardiolipin, lipids with high spontaneous negative curvature. Disruption of membrane integrity by induction of membrane curvature could apply more broadly to other amyloid proteins and be responsible for membrane damage observed in other amyloid diseases as well.  相似文献   

15.
Islet amyloid polypeptide (IAPP) is a pancreatic hormone and one of a number of proteins that are involved in the formation of amyloid deposits in the islets of Langerhans of type II diabetes mellitus patients. Though IAPP-membrane interactions are known to play a major role in the fibrillation process, the mechanism and the peptide's conformational changes involved are still largely unknown. To obtain new insights into the conformational dynamics of IAPP upon its aggregation at membrane interfaces and to relate these structures to its fibril formation, we studied the association of IAPP at various interfaces including neutral as well as charged phospholipids using infrared reflection absorption spectroscopy. The results obtained reveal that the interaction of human IAPP with the lipid interface is driven by the N-terminal part of the peptide and is largely driven by electrostatic interactions, as the protein is able to associate strongly with negatively charged lipids only. A two-step process is observed upon peptide binding, involving a conformational transition from a largely alpha-helical to a beta-sheet conformation, finally forming ordered fibrillar structures. As revealed by simulations of the infrared reflection absorption spectra and complementary atomic force microscopy studies, the fibrillar structures formed consist of parallel intermolecular beta-sheets lying parallel to the lipid interface but still contain a significant number of turn structures. We may assume that these dynamical conformational changes observed for negatively charged lipid interfaces play an important role as the first steps of IAPP-induced membrane damage in type II diabetes.  相似文献   

16.
Ahmad E  Ahmad A  Singh S  Arshad M  Khan AH  Khan RH 《Biochimie》2011,93(5):793-805
Type-2 diabetes mellitus (DM-2) is a conformational disease involving intrinsically disordered islet amyloid polypeptide (IAPP), in which a structural transition from physiological polypeptide to pathological deposits takes place. Different factors acquired or inherited, contribute to endoplasmic reticulum stress and/or impair mitochondrial function which leads to conformational changes in IAPP intermediates and ultimately produces oligomers of an anti-parallel crossed β-pleated sheets that eventually accumulate as space-occupying lesions within the islets. Clusters of IAPP monomers form a pore which is linked to channel-like behavior in planar bilayers, indicating that these oligomeric IAPP pores could become incorporated into membranes and alter its barrier properties. Identification of nucleating residues and the residues responsible for this oligomeric tendency could improve understanding of structure-function relationships as well as the molecular mechanism of folding and aggregation of IAPP contributing to the onset of DM-2. A combination of biological, chemical or physical approaches is required to be extensively pursued for the development of a successful anti-amyloidogenic agent to prevent this malady. Exploring the hypothesis of π-stacking may be a better option to control IAPP aggregation if researchers go through the mechanism of π-π interaction, which provides entropy driven energy and direction for self-assembly to control amyloidogenic aggregation.  相似文献   

17.
Amyloid deposition of human islet amyloid polypeptide (hIAPP) in the islets of Langerhans is closely associated with the pathogenesis of type II diabetes mellitus. Despite substantial evidence linking amyloidogenic hIAPP to loss of β-cell mass and decreased pancreatic function, the molecular mechanism of hIAPP cytotoxicity is poorly understood. We here investigated the binding of hIAPP and nonamyloidogenic rat IAPP to substrate-supported planar bilayers and examined the membrane-mediated amyloid aggregation. The membrane binding of IAPP in soluble and fibrillar states was characterized using quartz crystal microbalance with dissipation monitoring, revealing significant differences in the binding abilities among different species and conformational states of IAPP. Patterned model membranes composed of polymerized and fluid lipid bilayer domains were used to microscopically observe the amyloid aggregation of hIAPP in its membrane-bound state. The results have important implications for lipid-mediated aggregation following the penetration of hIAPP into fluid membranes. Using the fluorescence recovery after photobleaching method, we show that the processes of membrane binding and subsequent amyloid aggregation are accompanied by substantial changes in membrane fluidity and morphology. Additionally, we show that the fibrillar hIAPP has a potential ability to perturb the membrane structure in experiments of the fibril-mediated aggregation of lipid vesicles. The results obtained in this study using model membranes reveal that membrane-bound hIAPP species display a pronounced membrane perturbation ability and suggest the potential involvement of the oligomeic forms of hAPP in membrane dysfunction.  相似文献   

18.
Exploring the accurate structure ensembles are critical to understand the functions of intrinsically disordered proteins (IDPs). As a well-known IDP, islet amyloid polypeptide (IAPP) plays important roles in the development of human type II diabetes (T2D). The toxicity of human IAPP (hIAPP) is induced by the amyloidosis of the peptide, however, its aggregation mechanism remains ambiguous. The characterization of structure ensemble of hIAPP, as well as the differences between hIAPP and its non-amyloidogenic homologous such as rat IAPP (rIAPP), would greatly help to illuminate the amyloidosis mechanism of IAPP. In this study, the atomic structure ensembles of hIAPP and rIAPP were characterized by all-atom molecular dynamics (MD) simulations combined with enhanced sampling technology and experiment data restraints. The obtained structure ensembles were firstly compared with those determined by the conventional MD (cMD) and enhanced sampling without experiment data restraints. The results showed that the enhanced sampling and experiment data restraints would improve the simulation accuracy. The transient N-terminal α-helix structures were adopted by the sub-states of both hIAPP and rIAPP, however, the C-terminal helical structures were only present on hIAPP. The hydrophobic residues in the amyloid-core region of hIAPP are exposed to the solvent. The structure ensemble differences between hIAPP and rIAPP revealed in this work provide potential explain to the amyloidogenic mechanism and would be helpful for the design of drugs to combat T2D.  相似文献   

19.
Islet amyloid polypeptide (IAPP, also known as amylin) is the major protein component of pancreatic amyloid fibers in type II diabetes and is normally cosecreted with insulin from the beta-cells of the pancreas. IAPP forms amyloid fibrils rapidly at concentrations well below those found in vivo, yet progression of type II diabetes occurs over many years. Insulin, a known inhibitor of IAPP fibrillogenesis, exists as a dense crystalline or near-crystalline core in the secretory vesicle, while IAPP localizes to the region between the crystal and the secretory vesicle membrane. In vitro, IAPP fibrillogenesis is both accelerated by lipid membranes and inhibited by monomeric insulin. In this work, we investigate insulin-IAPP-lipid interactions in vitro under conditions chosen to approximate native secretory vesicle physiology and the amyloid disease state. The effect of insulin on IAPP fibrillogenesis is investigated using fluorescence spectrometry. Additionally, interactions of IAPP and lipids with crystalline insulin are studied using fluorescence microscopy. We find that, while soluble states of insulin and IAPP do not interact significantly, large assemblies of either insulin (crystals) or IAPP (fibers) can lead to stable IAPP-insulin interactions. The results raise the possibility of multiple physiological interactions between these two beta-cell hormones.  相似文献   

20.
Islet amyloid polypeptide (a.k.a. IAPP, amylin) is a 37 amino acid hormone that has long been associated with the progression of type II diabetes mellitus (TIIDM) disease. The endocrine peptide hormone aggregatively misfolds to form amyloid deposits in and around the pancreatic islet β-cells that synthesize both insulin and IAPP, leading to a decrease in β-cell mass in patients with the disease. Extracellular IAPP amyloids induce β-cell death through the formation of reactive oxygen species, mitochondrial dysfunction, chromatin condensation, and apoptotic mechanisms, although the precise roles of IAPP in TIIDM are yet to be established. Here we review aspects of the normal physiological function of IAPP in glucose regulation together with insulin, and its misfolding which contributes to TIIDM, and may also play roles in other pathologies such as Alzheimer's and heart disease. We summarize information on expression of the IAPP gene, the regulation of the hormone by post-translational modifications, the structural properties of the peptide in various states, the kinetics of misfolding to amyloid fibrils, and the interactions of the peptide with insulin, membranes, glycosaminoglycans, and nanoparticles. Finally, we describe how basic research is starting to have a positive impact on the development of approaches to circumvent IAPP amyloidogenesis. These include therapeutic strategies aimed at stabilizing non-amyloidogenic states, inhibition of amyloid growth or disruption of amyloid fibrils, antibodies directed towards amyloid structures, and inhibition of interactions with cofactors that facilitate aggregation or stabilize amyloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号