首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Phytofabricated green synthesis of zinc oxide (ZnO) nanoparticles using different plant extracts of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera, and Tamarindus indica for biological applications has been reported. ZnO nanoparticles were also synthesized by chemical method to compare the efficiency of the green synthesized nanoparticles. FT-IR spectra confirmed the functional groups involved in the green synthesis of ZnO nanoparticles and the powder XRD patterns of the ZnO nanoparticles revealed pure wurtzite structure with preferred orientation at (100) reflection plane. SEM and TEM analysis revealed the spherical shape of the synthesized ZnO nanoparticles with the particle size between 54 and 27 nm. The antioxidant activity was evaluated by five different free radical scavenging assays. The present study also intends to screen α-amylase and α-glucosidase activity of ZnO nanoparticles synthesized using natural sources, which may minimize the toxicity and side effects of the inhibitors used to control diabetes. The ZnO nanoparticles synthesized using T. indica extract displayed remarkable antioxidant and antidiabetic activities.

  相似文献   

2.
Zinc oxide, an established inorganic metal oxide in nanoparticles form exhibits tremendous anti-bacterial activity. The present study focuses on determining the anti-bacterial activity of green synthesized zinc oxide nanoparticles (ZnO NPs). Results clearly validate the effective synthesis of spherical shaped nanoparticles with average size range of 60–80 nm. SEM and EDAX data buttresses the results obtained by XRD pattern in terms of size and purity. ZnO NPs exhibited dose-dependent anti-bacterial activity against Escherichia coli (E. coli) and the IC50 value was calculated to be around 20 μg/mL. Growth kinetics study was conducted in the presence of nanoparticles which demonstrated the bacteriostatic effect of ZnO NPs. The study recommends the potential use of ZnO NPs in industries like food, pharmaceutical, agriculture, cosmetic industries for its anti-bacterial activity.  相似文献   

3.
Citrus black rot disease being caused by Alternaria citri is a major disease of citrus plants with 30–35% economic loss annually. Fungicides had not been effective in the control of this disease during last few decades. In the present study, antifungal role of green synthesized zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) were studied against Alternaria citri. Alternaria citri was isolated from disease fruits samples and was identified by staining with lacto phenol cotton blue. Furthermore, CuO and ZnO NPs were synthesized by utilizing the lemon peels extract as the reducing and capping agent. Nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. From the XRD data, the calculated size of CuO NPs was to be 18 nm and ZnO NPs was16.8 nm using Scherrer equation. The SEM analyses revealed the surface morphology of all the metal oxide NPs synthesized were rounded, elongated and or spherical in the shape. The zone of inhibition was observed to be 50 ± 0.5 mm by CuO NPs, followed by 51.5 ± 0.5 mm by ZnO NPs and maximum zone of antifungal inhibition was observed to be 53 ± 0.6 mm by mix metal oxide NPs. The results of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the synthesized nanoparticles showed that at the certain concentrations (80 mg ml?1), these NPs were capable of inhibiting the fungal growth, whereas above that specified concentrations (100 mg ml?1), NPs completely inhibited the fungal growth. Based on these findings, the green synthesized NPs can be used as alternative to fungicide in order to control the citrus black rot disease.  相似文献   

4.
Glycolate oxidase was isolated from Medicago falcata Linn. after a screening from 13 kinds of C3 plant leaves, with higher specific activity than the enzyme from spinach. The M. falcata glycolate oxidase (MFGO) was partially purified and then immobilized onto hydrothermally synthesized magnetic nanoparticles via physical adsorption. The magnetic nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. The maximum load of MFGO was 56 mg/g support and the activity recovery was 45%. Immobilization of MFGO onto magnetic nanoparticles enhanced the enzyme stability, and the optimum temperature was significantly increased from 15 °C to 30 °C. The immobilized biocatalyst was successfully used in a batch reactor for repeated oxidization of glycolic acid to synthesize glyoxylic acid, retaining ca. 70% of its initial activity after 4 cycles of reaction at 30 °C for nearly 70 h, and its half-life was calculated to be 117 h.  相似文献   

5.
Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same as bulk sources of ZnO.  相似文献   

6.
Zinc and its derivatives requirement increased to enhance human immunity against the different pandemics, including covid-19. Green synthesis is an emerging field of research. Zinc oxide (ZnO) nanoparticles have been prepared from Anoectochilus elatus and characterized using absorption, vibrational and electron microscope analysis. They were carried for antibacterial, inflammatory control tendency, and potential antioxidant activities. The brine shrimp lethal assay tested the biologically derived nanomaterial toxicity and the lethal concentration (LC50) is 599.79 µg/ml. The inhibition against the important disease-causing pathogens was measured against four-gram negative, gram-positive bacteria and two fungus pathogens. The nanomaterial exposed inhibition zone for gram-positive bacteria between 17 mm and 25 mm. The inhibition zone against gram-negative bacteria exists between 19 mm and 24 mm. The anti-inflammatory activity was assessed by inhibition of protein denaturation and protease inhibitory activity using nanomaterial. The antioxidant activity was examined using four assays for the therapeutic activities. The average size range of 60–80 nm nanoparticles has prepared and exposed the good biological activity between 50 µg/ml and 100 µg/ml. The comparative results of anti-inflammatory and antioxidant assay results with standards such as Aspirin and vitamin C exposed that two to three times higher concentrations are required for the fifty percent of inhibitions. The prepared low-cost nanoparticle has exhibited excellent biological activity without any side effects and may enhance immunity.  相似文献   

7.
《Process Biochemistry》2014,49(1):160-172
The green synthesis of zinc oxide nanoparticles (ZnONPs) using Borassus flabellifer fruit extract was characterized by UV–visible spectroscopy, FT-IR, XRD, TEM, Zeta potential and EDS analysis. The UV–visible spectrum showed an absorption peak at 368 nm that reflects surface Plasmon resonance (SPR) ZnONPs. TEM photograph showed that the green synthesized ZnONPs were porous in nature and rod like structure with an average size of 55 nm. The Zeta potential value of −21.5 mV revealed the surface charge of green synthesized ZnONPs. In this study, we examined the synthesized DOX-ZnONPs exhibited a dose-dependent cytotoxicity against MCF-7 and HT-29. The inhibitory concentration (IC50) was found to be 0.125 μg mL−1 for MCF-7 and HT-29 cells. An induction of apoptosis was evidenced by nuclear stain Hoechst 33258. In vivo toxicity assessment showed that DOX-ZnONPs have low systemic toxicity in murine model system. The results prove that the DOX-ZnONPs has low toxicity and high therapy efficacy, which provides convincing evidence for the green biosynthesized ZnO as a promising candidate for a drug delivery system.  相似文献   

8.
Glucose oxidase (GOD) was covalently immobilized onto Fe3O4/SiO2 magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50°C. The immobilized GOD retained 80% of its initial activity after 6 h at 45°C while free enzyme retained only 20% activity. The immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity after 1 month at 4°C whereas free enzymes retained 62% of its activity.  相似文献   

9.
The antibacterial activity of ZnO nanoparticles has been investigated and presented in this paper. Nanoparticles were prepared via non-hydrolytic solution process using zinc acetate di-hydrate (Zn(CH3COO)2·2H2O) and aniline (C6H5NH2) in 6 h refluxing at ∼65 °C. In the presence of four pathogens such as Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Klebsiella pneumoniae, the antibacterial study of zinc oxide nanoparticles were observed. The antibacterial activity of ZnO nanoparticles (ZnO-NPs) were studied by spectroscopic method taking different concentrations (5–45 μg/ml) of ZnO-NPs. Our investigation reveals that the lowest concentration of ZnO-NPs solution inhibiting the growth of microbial strain is found to be 5 μg/ml for K. pneumoniae, whereas for E. coli, S. aureus, and S. typhimurium, it was calculated to be 15 μg/ml. The diameter of each ZnO-NPs lies between “20 and 30 nm” as observed from FESEM and transmission electron microscopy images. The composition of synthesized material was analyzed by the Fourier transform infrared spectroscopy, and it shows the band of ZnO at 441 cm−1. Additionally, on the basis of morphological and chemical observations, the chemical reaction mechanism of ZnO-NPs was also proposed.  相似文献   

10.
This work explores the thermoluminescence (TL) and photoluminescence (PL) properties of Ag/Y co-doped zinc oxide (ZnO) nanophosphor. The proposed dosimeter was prepared by the coprecipitation method and sintered at temperatures from 400°C to 1000°C in an air atmosphere. Raman spectroscopy was studied to investigate the structural features of this composition. The new proposed dosimeter revealed two peaks at 150°C and 175°C with a small shoulder at high temperature (225°C). The PL spectrum showed strong green emissions between 500 to 550 nm. The Raman spectrum showed many bands related to the interaction between ZnO, silver (Ag), and yttrium oxide (Y2O3). The rising sintering temperature enhanced the TL glow curve intensity. The Ag/Y co-doped ZnO nanophosphor showed an excellent linearity index within a dose from 1 to 4 Gy. The minimum detectable dose (MDD) of the Ag/Y co-doped ZnO nanopowder (pellets) equaled 0.518 mGy. The main TL properties were achieved in this work as follows: thermal fading (37% after 45 days at 1 and 4 Gy), optical fading (53% after 1 h and 68% after 6 h by exposure to sunlight), effective atomic number (27.6), and energy response (flat behavior from 0.1 to 1.3 MeV). Finally, the proposed material shows promising results nominated to be used for radiation measurements.  相似文献   

11.
The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag–TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.  相似文献   

12.
The present study explores the reducing and capping potentials of ethanolic flower extract of the plant Nyctanthes arbortristis for the synthesis of gold nanoparticles. The extract at different volume fractions were stirred with HAuCl4 aqueous solution at 80 °C for 30 min. The UV–Vis spectroscopic analysis of the reaction products confirmed successful reduction of Au3+ ions to gold nanoparticles. Transmission electron microscope (TEM) revealed dominant spherical morphology of the gold nanoparticles with an average diameter of 19.8 ± 5.0 nm. X-ray diffraction (XRD) study confirmed crystalline nature of the synthesized particles. Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis of the purified and lyophilized gold nanoparticles confirmed the surface adsorption of biomolecules during preparation and caused long-term (6 months) stability. Low reaction temperature (25 °C) favored anisotropy. The strong reducing power of the flower extract can also be tested in the green synthesis of other metallic nanoparticles.  相似文献   

13.
Zinc oxide (ZnO) and ZnO:Cu nanoparticles (NPs) were synthesized using a rapid, controllable, one‐pot and room‐temperature pulsed UV‐laser assisted method. UV‐laser irradiation was used as an effective energy source in order to gain better control over the NPs size and morphology in aqueous media. Parameters effective in laser assisted synthesis of NPs such as irradiation time and laser shot repetition rate were optimized. Photoluminescence (PL) spectra of ZnO NPs showed a broad emission with two trap state peaks located at 442 and 485 nm related to electronic transition from zinc interstitial level (IZn) to zinc vacancy level (VZn) and electronic transition from conduction band to the oxygen vacancy level (VO), respectively. For ZnO:Cu NPs, trap state emissions disappeared completely and a copper (Cu)‐related emission appeared. PL intensity of Cu‐related emission increased with the increase in concentration of Cu2+, so that for molar ratio of Cu:Zn 2%, optimal value of PL intensity was obtained. The photocatalytic activity of Cu‐doped ZnO revealed 50 and 100% increasement than that of undoped NPs under UV and visible irradiation, respectively. The enhanced photocatalytic activity could be attributed to smaller crystal size, as well as creation of impurity acceptor levels (T2) inside the ZnO energy band gap.  相似文献   

14.
Green synthesis of nanoparticles using various plant materials opens a new scope for the phytochemist and discourages the use of toxic chemicals. In this article, we report an eco-friendly and low-cost method for the synthesis of silver nanoparticles (AgNPs) using Andean blackberry fruit extracts as both a reducing and capping agent. The green synthesized AgNPs were characterized by various analytical instruments like UV–visible, transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The formation of AgNPs was analyzed by UV–vis spectroscopy at λmax = 435 nm. TEM analysis of AgNPs showed the formation of a crystalline, spherical shape and 12–50 nm size, whereas XRD peaks at 38.04°, 44.06°, 64.34° and 77.17° confirmed the crystalline nature of AgNPs. FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. Furthermore, it was found that the AgNPs showed good antioxidant efficacy (>78%, 0.1 mM) against 1,1-diphenyl-2-picrylhydrazyl. The process of synthesis is environmentally compatible and the synthesized AgNPs could be a promising candidate for many biomedical applications.  相似文献   

15.
Zhi Chen 《Luminescence》2016,31(4):965-971
Zinc oxide nanoparticles doped with bovine serum albumin were used to determine histidine in aqueous solutions using a fluorescence spectroscopic technique. The results showed that histidine effectively quenched the fluorescence of the modified ZnO nanoparticles, whereas other amino acids did not significantly affect the light emission, thereby allowing selective and sensitive histidine detection in amino acid mixtures. Under optimal conditions (pH 7.0, 25 °C, 10 min preincubation), the detection limit for histidine was ~ 9.87 × 10–7 mol/L. The high value of the determined quenching rate constant Kq (3.30 × 1013 L/mol/s) was consistent with a static quenching mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.

The synthesis of metal nanoparticles by green methods attained enormous attention in recent years due to its easiness, non-toxicity, and eco-friendly nature. In the present study, noble metal nanoparticles such as silver and gold were prepared using an aqueous leaf extract of a medicinal plant, Bauhinia purpurea. The leaf extract performed as both reducing and stabilizing agents for the development of nanoparticles. The formations of silver and gold nanoparticles were confirmed by observing the surface plasmon resonance peaks at 430 nm and 560 nm, respectively, in UV–Vis absorption spectrum. Various properties of nanoparticles were demonstrated using the characterization techniques such as FTIR, XRD, TEM, and EDX. The synthesized silver and gold nanoparticles had a momentous anticancer effect against lung carcinoma cell line A549 in a dose-dependent manner with IC50 values of 27.97 µg/mL and 36.39 µg/mL, respectively. The antimicrobial studies of synthesized nanoparticles were carried out by agar well diffusion method against six microbial strains. Silver and gold nanoparticles were also showed high antioxidant potentials with IC50 values of 42.37 µg/mL and 27.21 µg/mL, respectively; it was measured using DPPH assay. Additionally, the nanoparticles were observed to be good catalysts for the reduction of organic dyes.

  相似文献   

17.
Zinc plays a very important role in various biological activities of the body. Multifaceted role of zinc is also known in testes development, spermatogenesis, capacitation and has effect on spermatozoa motility. On the other hand, the growing industry of nanotechnology has created reasonable interest of the risk assessment for nanoparticles. The aim of this study was to evaluate in vitro effect of zinc oxide (ZnO) nanoparticles on rabbit spermatozoa. Fresh semen was collected from sexually mature New Zealand rabbits. Experimental groups were prepared by diluting semen with ZnO nanoparticles in seven different concentrations (6–391 mg/mL). The experimental groups were compared with control group. Semen was assessed using computer assisted semen analysis (CASA) at intervals of 0, 1, 2 and 3 h of incubation. The mitochondrial toxicity assay (MTT) assay was used to determine cell viability. The results of monitored motility parameters in experimental groups showed a decreasing trend during whole experiment. Significant decrease (P < 0.001) of motility and progressive motility was observed after 3 h of incubation in samples cultured with higher ZnO nanoparticles in comparison to the control group. After 3 h of incubation, viability of rabbit spermatozoa showed slightly increased values in group with the lowest concentration of ZnO nanoparticles, but in other groups viability showed non-significant decrease compared to control. Similar tendency was detected for spermatozoa membrane integrity. These original data show the negative dose–dependent effect of ZnO nanoparticles on spermatozoa motility and viability parameters.  相似文献   

18.
The present work aims to synthesize zinc oxide (ZnO) nanoparticles via green approaches using leaf extract of Parthenium hysterophorus. UV–vis and FT-IR tests confirmed the existence of biomolecules, active materials, and metal oxides. The X-ray diffraction structural study exposes the ZnO nanoparticles formation with hexagonal phase structures. SEM and TEM analysis reveal surface morphologies of ZnO nanoparticles and most of them are spherical with a size range of 10 nm. ZnO nanoparticles were revealed strong antimicrobial activity against both bacterial and fungal strains. The germination of seeds and vegetative growth of Sesamum indicum has been greatly improved.  相似文献   

19.
Here, we report a simple, eco-friendly and inexpensive approach for the synthesis of zinc oxide nanoparticles (ZnO NPs) using Coptidis Rhizoma. The ZnO NPs were characterized by UV–visible absorption spectroscopy, FTIR, SEM-EDX, TGA, TEM, SAED and XRD. TEM images confirmed the presence of spherical and rod shaped ZnO NPs in the range of 2.90–25.20 nm. Green synthesized ZnO NPS exhibited moderate antibacterial activity against Gram-positive and Gram-negative bacteria and excellent DPPH free radical scavenging activity. Synthesized ZnO NPs had no toxic effects on the RAW 264.7 cell line.  相似文献   

20.
Zinc oxide nanoparticles (ZnONPs) from plant origin were postulated to regulate complex hormonal control through the hypothalamus– pituitary–testicular axis and somatic cells due to their unique small size and effective drug delivery to target tissues. This study therefore investigates the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) from Moringa oleifera leaves on key endocrine hormones (LH, FSH and testosterone), MDA level, antioxidant enzymes (SOD and CAT), acetylcholineesterase (AChE) activity and reactive nitrogen species (NO?) level in rotenone induced male rat. The animals were divided into six groups (n = 8). Group I was orally given olive oil as vehicle; Group II received 60 mg/kg of rotenone (RTNE) only; Group III (RTNE + ZnONPs) received 60 mg/kg RTNE + 10 mg/kg ZnONPs; Group IV (RTNE + ZnCAP) received 60 mg/kg RTNE + 50 mg/kg zinc capsule; Group V (ZnONPs only) received 10 mg/kg ZnONPs only. Group VI received 50 mg/kg ZnCAP only. The experiment lasted 10 days. TEM and XRD images revealed ZnO NPs. Moreover, the presence of organic molecules in bio-reduction reactions from the FTIR spectrum showed the stabilization of the nanoparticles. Also, animals induced with rotenone exhibited impairment in the leydig cells by depleting LH, FSH, and testosterone levels with reduced AChE activity and significant (p < 0.05) alteration in cerebral enzymatic antioxidants. There was also brain increase in NO? production: marker of pro-inflammation. Nanotherapeutically, ZnONPs regulated hypothalamus–pituitary–testicular axis via modulation of cerebral NO?, FSH, LH, testosterone and AChE activity with induction of anti-oxidative enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号