首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effects of microtubule-targeting anticancer drugs (paclitaxel, cabazitaxel, and eribulin) on the expression of drug efflux transporter P-glycoprotein, which is encoded by MDR1. Paclitaxel and eribulin induced MDR1 promoter activity in a concentration-dependent manner, while cabazitaxel had little effect in human intestinal epithelial LS174T cells. Overexpression of the nuclear receptor pregnane X receptor (PXR) gene (NR1I2) enhanced paclitaxel- and eribulin-induced MDR1 activation, but expression of the nuclear receptor co-repressor silencing mediator for retinoid and thyroid receptors (SMRT) gene (NCOR2) repressed MDR1 activation. Eribulin increased the mRNA and protein expression of P-glycoprotein in LS174T cells. Cellular uptake of rhodamine 123 and calcein-acetoxymethyl ester (calcein-AM), P-glycoprotein substrates, decreased in paclitaxel- or eribulin-treated LS174T cells. Eribulin also increased MDR1 promoter activity in human breast cancer MCF7 cells. The results suggest that the microtubule-targeting anticancer drug eribulin can induce the drug efflux transporter P-glycoprotein via PXR in human intestinal and breast cancer cells and thus influence the efficacy of anticancer drugs.  相似文献   

2.
3.
Inflammatory bowel disease (IBD) is an immune-mediated chronic inflammation of the intestine, which can present in the form of ulcerative colitis (UC) or as Crohn’s disease (CD). Biomarkers are needed for reliable diagnosis and disease monitoring in IBD, especially in pediatric patients. Plasma samples from a pediatric IBD cohort were interrogated using an aptamer-based screen of 1322 proteins. The elevated biomarkers identified using the aptamer screen were further validated by ELISA using an independent cohort of 76 pediatric plasma samples, drawn from 30 CD, 30 UC, and 16 healthy controls. Of the 1322 proteins screened in plasma from IBD patients, 129 proteins were significantly elevated when compared with healthy controls. Of these 15 proteins had a fold change greater than 2 and 28 proteins had a fold change >1.5. Neutrophil and extracellular vesicle signatures were detected among the elevated plasma biomarkers. When seven of these proteins were validated by ELISA, resistin was the only protein that was significantly higher in both UC and CD (p < 0.01), with receiver operating characteristic area under the curve value of 0.82 and 0.77, respectively, and the only protein that exhibited high sensitivity and specificity for both CD and UC. The next most discriminatory plasma proteins were elastase and lactoferrin, particularly for UC, with receiver operating characteristic area under the curve values of 0.74 and 0.69, respectively. We have identified circulating resistin, elastase, and lactoferrin as potential plasma biomarkers of IBD in pediatric patients using two independent diagnostic platforms and two independent patient cohorts.  相似文献   

4.
Epithelial–mesenchymal transition (EMT) plays a pivotal role in cancer progression and metastasis in many types of malignancies, including colorectal cancer. Although the importance of EMT is also considered in colorectal neuroendocrine carcinoma (NEC), its regulatory mechanisms have not been elucidated. We recently established a human colorectal NEC cell line, SS-2. In this study, we aimed to clarify whether these cells were sensitive to transforming growth factor beta 1 (TGF-β1) and whether EMT could be induced through TGF-β1/Smad signaling, with the corresponding NEC cell-specific changes in invasiveness. In SS-2 cells, activation of TGF-β1 signaling, as indicated by phosphorylation of Smad2/3, was dose-dependent, demonstrating that SS-2 cells were responsive to TGF-β1. Analysis of EMT markers showed that mRNA levels changed with TGF-β1 treatment and that E-cadherin, an EMT marker, was expressed in cell-cell junctions even after TGF-β1 treatment. Invasion assays showed that TGF-β1-treated SS-2 cells invaded more rapidly than non-treated cells, and these cells demonstrated increased metalloproteinase activity and cell adhesion. Among integrins involved in cell-to-matrix adhesion, α2-integrin was exclusively upregulated in TGF-β1-treated SS-2 cells, but not in other colon cancer cell lines, and adhesion and invasion were inhibited by an anti-α2-integrin blocking antibody. Our findings suggest that α2-integrin may represent a novel therapeutic target for the metastasis of colorectal NEC cells.  相似文献   

5.
The classical models of investigating Shigella flexneri adherence and invasion of tissue culture cells involve either bacterial centrifugation (spinoculation) or the use of AfaE adhesin to overcome the low infection rate observed in vitro. However clinically, S. flexneri clearly adheres and invades the human colon in the absence of ‘spinoculation’. Additionally, certain S. flexneri tissue cell based assays (e.g. plaque assays and infection of T84 epithelial cells on Transwells®), do not require spinoculation. In the absence of spinoculation, we recently showed that glycan-glycan interactions play an important role in S. flexneri interaction with host cells, and that in particular the S. flexneri 2a lipopolysaccharide O antigen glycan has a high affinity for the blood group A glycan. During the investigation of the effect of blood group A antibodies on S. flexneri interaction with cells, we discovered that Panc-1 cells exhibited a high rate of infection in the absence of spinoculation. Select blood group A antibodies inhibited invasion of Panc-1 cells, and adherence to T84 cells. The use of Panc-1 cells represents a simplified model to study S. flexneri pathogenesis and does not require either spinoculation or exogenous adhesins.  相似文献   

6.
Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry–based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer–derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I–associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell–based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309.  相似文献   

7.
Cancer cells with stem cell properties have been acknowledged to be responsible for cancer initiation and progression. Wnt/β-catenin signalling is a major signal pathway promoting the stemness of cancer cells. Anterior gradient 3 (AGR3), a member of the protein disulfide isomerase (PDI) family, was found to be overexpressed in several cancers. However, the roles and mechanisms of AGR3 in colorectal cancer (CRC) have not been previously described. In our study, we find that AGR3 is highly expressed in CRC and associated with poor prognosis. Functional studies show that AGR3 promotes the stemness of CRC cells. Mechanically, AGR3 activates Wnt/β-catenin signalling and promotes the nuclear translocation of β-catenin to upregulate stemness related genes. Wnt/β-catenin signalling inhibition counteracts the promoting effect of AGR3 on cancer stemness. Moreover, the effect of AGR3 on Wnt/β-catenin signalling and cancer stemness depends on the presence of frizzled 4 (FZD4). Thus, our study first uncovers the stemness-promoting role and the oncogenic mechanism of AGR3 in CRC, which might provide a novel target for designing anti-CRC strategies.  相似文献   

8.
《Genomics》2022,114(3):110319
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for myocardial infarction (MI). This study aims to explore the mechanism of human umbilical cord MSCs (hucMSCs)-derived EVs loaded with miR-223 on MI. Inflammation, cell biological functions, and fibrosis in vitro were measured. Furthermore, MI rat models were established to verify the role of EVs-miR-223 in vivo. The binding relationship between miR-223 and P53 was confirmed. ChIP assay was utilized to observe the combination of P53 and S100A9. The suppressed fibrosis of cardiomyocytes occurred with cells overexpressing miR-223. MiR-223 contributed to the angiogenesis of HUVECs. P53 was a target gene of miR-223. In vivo, miR-223 relieved myocardial fibrosis and inflammation infiltration, and promoted the angiogenesis in MI rats. HucMSC-derived EVs loaded with miR-223 mitigates MI and promotes myocardial repair through the P53/S100A9 axis, manifesting the underlying therapy values of hucMSC-derived EVs loaded with miR-223 in MI.  相似文献   

9.
Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells.  相似文献   

10.
Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.  相似文献   

11.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

12.
The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry–based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.  相似文献   

13.
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, with increasing incidence worldwide. The molecular basis of cSCC progression to invasive and metastatic disease is still incompletely understood. Here, we show that fibroblasts and transforming growth factor-β (TGF-β) signaling promote laminin-332 synthesis in cancer cells in an activated H-Ras-dependent manner, which in turn promotes cancer cell invasion. Immunohistochemical analysis of sporadic UV-induced invasive human cSCCs (n = 208) revealed prominent cSCC cell specific immunostaining for laminin-332 γ2 chain, located in the majority of cases (90%, n = 173) in the invasive edge of the tumors. To mimic the progression of cSCC we established 3D spheroid cocultures using primary skin fibroblasts and HaCaT/ras-HaCaT human keratinocytes. Our results indicate that in 3D spheroids, unlike in monolayer cultures, TGF-β upregulates laminin-332 production, but only in cells that harbour oncogenic H-Ras. Accumulation of laminin-332 was prevented by both H-Ras knock down and inhibition of TGF-β signaling by SB431542 or RAdKD-ALK5 kinase-defective adenovirus. Furthermore, fibroblasts accelerated the invasion of ras-HaCaT cells through collagen I gels in a Ras/TGF-β signaling dependent manner. In conclusion, we demonstrate the presence of laminin-332 in the invasive front of cSCC tumors and report a new Ras/TGF-β-dependent mechanism that promotes laminin-332 accumulation and cancer cell invasion.  相似文献   

14.
Disruption of epidermal barrier is an important trigger in abnormal cutaneous inflammation. Phospholipase C epsilon (PLCε), a Ras/Rap1 effector, is essential for regulating cytokines production in different types of skin inflammation. Our previous studies have demonstrated that elevated expression of PLCε participates in the psoriasis-like inflammation in PLCε overexpressing transgenic mice model, while the reduction in PLCε expression attenuates inflammatory responses in either TPA- or DNFB-induced cutaneous inflammation. Here, we determined the role of PLCε in cutaneous inflammation induced by acute abrogation of epidermal permeability barrier. In comparison to wild type controls, PLCε KO mice exhibited reduced ear swelling and infiltration of granulocytes after tape-stripping. Moreover, expression levels of pro-inflammatory cytokines (IL-1α, IL-1β), chemokines (CXCL-1, CXCL-2, CCL20), and antimicrobial peptides (S100 proteins, MBD3) were lower in PLCε-deficient versus wild type mice. Likewise, expression levels of cytokines and chemokines were also lower in PLCε deficient keratinocytes and fibroblasts following IL-22 stimulation in vitro. Furthermore, knockdown of PLCε with its siRNA decreased expression of IL-1α, CCL20, and S100 proteins, and MBD3 in HEK cultures. Collectively, these results suggested that PLCε mediated cytokine cascade induced by acute barrier disruption. IL-22 is likely the upstream of PLCε-mediated cytokine cascade following acute barrier disruption.  相似文献   

15.
Siglecs (sialic acid–binding immunoglobulin-like lectins) are a family of receptors that bind sialic acids in specific linkages on glycoproteins and glycolipids. Siglecs play roles in immune signalling and exhibit cell-type specific expression and endocytic properties. Recent studies suggest that Siglecs are likely to function as immune checkpoints that regulate responses in cancers and inflammatory diseases. In this review, we discuss strategies to target the Siglec–sialic acid axis in human diseases, particularly cancer, and the possibility of exploiting them for therapeutic intervention.  相似文献   

16.
17.
The active hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3, is reported to have 1000s of biological targets. The growth-suppressive properties of 1α,25-dihydroxyvitamin D3 and its synthetic analogs have attracted interest for the development of treatment and/or prevention of cancer. We examined effects of 1α,25-dihydroxyvitamin D3 and the vitamin D analog tacalcitol on signaling pathways and anchorage-independent growth in T98G and U251 glioblastoma cells. Assay of signaling proteins important for cellular growth indicated suppression of p70-S6 kinase levels by 1α,25-dihydroxyvitamin D3 and tacalcitol in T98G cells, whereas the levels of PLCγ, a target for phospholipid signaling, was slightly increased.Activation of STAT3, an important regulator of malignancy, was suppressed by 1α,25-dihydroxyvitamin D3 and tacalcitol in T98G and U251 cells. However, despite the close structural similarity of these compounds, suppression was stronger by tacalcitol (1α,24-dihydroxyvitamin D3), indicating that even minor modifications of a vitamin D analog can impact its effects on signaling. Experiments using soft agar colony formation assay in T98G and U251 cells revealed significant suppression by 1α,25-dihydroxyvitamin D3 and tacalcitol on anchorage-independent growth, a property for cancer invasion and metastasis known to correlate with tumorigenicity. These findings indicate that vitamin D and its analogs may be able to counteract the oncogenic transformation, invasion and metastatic potential of glioblastoma and prompt further study of these compounds in the development of improved therapy for brain cancer.  相似文献   

18.
19.
Metastasis is the primary cause of death for most breast cancer (BC) patients who succumb to the disease. During the hematogenous dissemination, circulating tumor cells interact with different blood components. Thus, there are microenvironmental and systemic processes contributing to cancer regulation. We have recently published that red blood cells (RBCs) that accompany circulating tumor cells have prognostic value in metastatic BC patients. RBC alterations are related to several diseases. Although the principal known role is gas transport, it has been recently assigned additional functions as regulatory cells on circulation. Hence, to explore their potential contribution to tumor progression, we characterized the proteomic composition of RBCs from 53 BC patients from stages I to III and IV, compared with 33 cancer-free controls. In this work, we observed that RBCs from BC patients showed a different proteomic profile compared to cancer-free controls and between different tumor stages. The differential proteins were mainly related to extracellular components, proteasome, and metabolism. Embryonic hemoglobins, not expected in adults’ RBCs, were detected in BC patients. Besides, lysosome-associated membrane glycoprotein 2 emerge as a new RBCs marker with diagnostic and prognostic potential for metastatic BC patients. Seemingly, RBCs are acquiring modifications in their proteomic composition that probably represents the systemic cancer disease, conditioned by the tumor microenvironment.  相似文献   

20.
The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine–lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein–protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号